

Malé Declaration on Control and Prevention of Air Pollution and Its Likely Transboundary Effects for South Asia

Proceedings of the Annual Network Meeting 2003

> 6-7 October 2003 Dhaka, Bangladesh

PROCEEDINGS

ANNUAL NETWORK MEETING ON MALÉ DECLARATION 6-7 October 2003, Dhaka, Bangladesh

CONTENTS

List of Acronyms

Proceedings

Attachment I: List of Participants

Attachment II: Presentation on Progress science network meeting 2002

Attachment III: Preparation of national implementation plan by Bangladesh

Attachment IV: Preparation of national implementation plan by Bhutan

Attachment V: Preparation of national implementation plan by India

Attachment VI: Preparation of national implementation plan by Iran

Attachment VII: Preparation of national implementation plan by Nepal

Attachment VIII: Preparation of national implementation plan by Sri Lanka

Attachment IX: Presentation on parallel activities on emission inventory and modeling

LIST OF ACRONYMS

EANET East Asia Network on Acid Deposition

DoE Department of Environment

MoEF Ministry of Environment and Forest

MoC Monitoring Committee

NFP National Focal Point

NIA National Implementing Agency

RAPIDC Regional Air Pollution in Developing Countries

SACEP South Asia Co-operative Environment Programme

SEI Stockholm Environment Institute

Sida Swedish International Cooperative Development Agency

UNEP/RRC.AP United Nations Environment Programme / Regional Resource

Center for Asia and the Pacific

UNEP/ROAP UNEP Regional Office for Asia and the Pacific

PROCEEDINGS

The network meeting 2003 on the Malé Declaration on 'Control and Prevention of Air Pollution and its Likely Transboundary Effects for South Asia' was held in Dhaka on 6-7 October 2003. The meeting follows a continuation of the process, which began in Bangkok in March 1998 where a policy dialogue concerning regional air pollution in South Asia was initiated. The first network meeting after the adoption of Malé Declaration was held in Kathmandu during 22-23 February, 1999 and the network meeting 2001 was held in Colombo on 29 June. The network meeting for the year 2002 was held in Kathmandu during 18-19 July. Each participating country in South Asia nominated the National Implementing Agency (NIA) and National Focal Points (NFP) to follow-up activities and implementation of the Malé Declaration. Phase I activities on baseline studies and national action plans to monitor air pollution and its transboundary effects were successfully completed with active participation of countries. Phase II activities were initiated in March 2002 aimed at building capacity in each participating country for generating dry and wet deposition data in order to carry out the assessment of transboundary air pollution. The network meeting 2003 was organised in order to review the progress made since the last network meeting, and to chart out the future plan of action.

The meeting was attended by the Ministries of Environment and National Implementing Agencies (NIA) of the participating countries, members of Monitoring Committee (MoC), SACEP, SEI, UNEP, some experts and an independent facilitator. A list of the participants is enclosed in Attachment 1.

The meeting was organized by UNEP/RRC.AP, in collaboration with DoE, Bangladesh, SACEP and SEI. The meeting was funded by Sida as a part of the Programme on Regional Air Pollution in Developing Countries (RAPIDC).

1. Opening session

The network meeting 2003 for Malé Declaration was inaugurated on 06 October 2003. The inaugural session was addressed by H.E. Shajahan Siraj, Hon. Minister of Environment and Forest (MoEF), Sabihuddin Ahmed, Secretary of MoEF, Omar Faruque Khan, Director General, DoE, Mahboob Elahi, Director General, SACEP, Johan Kuylenstierna, Director, SEI-Y and Surendra Shrestha, Regional Director, UNEP ROAP / RRC.AP.

Dr. Omar welcomed the participants and outlined the accomplishments of phase I implementation of Malé Declaration in Bangladesh. He informed that the monitoring station under the Malé declaration will be soon established in Bangladesh for monitoring the transboundary air pollution as part of the phase II activities.

Mr. Shrestha called for a proactive approach and briefly elaborated the achievements of the Malé Declaration. He informed that the current phase (phase II) is focusing on capacity building for monitoring transboundary air pollution and in the future there is a need to provide our policy makers with mitigation options. He also provided an update on the similar initiatives in East Asia (EANET) and ASEAN countries (ASEAN Protocol on Transboundary Haze). Lastly, he thanked all the participating countries and agencies for

their commitments and active cooperation with regard to the implementation of Malé Declaration and Sida for its financial support.

Mr. Elahi in his opening remark emphasized the significance of transboundary air pollution and said that the Malé Declaration provides a framework to allow countries to work together on transboundary air pollution.

Dr. Johan Kuylenstierna in his speech informed that SEI is providing technical support to the implementation of Malé Declaration and expressed satisfaction on the progress thus far. He explained that some of the scientific activities of the RAPIDC programme can be helpful to the Malé Declaration.

In an opening speech, H.E. Mr. Shajahan Siraj expressed that air pollution as an emerging environmental issue is becoming a matter of great concern for Asia. He informed that the Government of Bangladesh has taken various steps to control air pollution and these actions have resulted in significant improvement in the air quality of Dhaka. He mentioned that Bangladesh has been undertaking phase-wise activities toward implementation of the Malé Declaration.

Mr. Sabihuddin Ahmed touched on the national level implementation of the Malé declaration in Bangladesh. He also mentioned that holding the Malé declaration meeting in Dhaka will pave the way to undertaking further initiative in controlling air pollution at national level as well as undertaking studies to assess and combat transboundary impacts of air pollution at regional level. He thanked UNEP, SACEP and SEI for the initiative.

2. Review on progress made

Mr. R. Rajamani, former Secretary of Ministry of Environment and Forests, Government of India was invited to facilitate the proceedings. In his introductory remarks, Mr. Rajamani briefly elaborated the objectives of the meeting and requested participating countries to put forward issues of concerns that could be the discussed in detail at the meeting.

Mr. M. Iyngararasan of UNEP-RRC.AP presented the progress made since the last network meeting held in June 2002. The various activities carried out in the period included: Development of training manuals; formal contracts with equipment venders; development of in-country training programmes; holding the in-country training programs and installation of equipments in 5 countries; organizing of a technical training program at regional level for wet deposition monitoring; a national level stakeholders meeting in India; information exchange through newsletter and and a news groups www.rrcap.uneo.org/md/webboard for information exchange. He also outlined the proposed activities to be developed for phase III, which include: monitoring and science/capacity building; (ii) impact studies; (iii) policy setting (se Attachment II).

3. Country presentations

Bangladesh: Mr. Hashmi presented the progress in Bangladesh (Attachment IV). Summary of the presentation and major discussions include:

- Selection of monitoring station and land procurement are completed. The construction of monitoring site will start in one month time at Shamnagar in the Sathkhira district.
- Equipment has been received and the in-country training program will be held during 19 -23 October 2003.
- Linkages with relevant programs/institutions in Bangladesh have also been made.
- A ten member national advisory committee has been established.
- Sample analysis will be carried out at the laboratory at Kulna and the national database will be located at the DoE.
- DoE are finalizing an air quality index for Dhaka
- A National stakeholders meeting will be held during phase II

Bhutan: Mr. Nedup presented the current status of monitoring station in Bhutan (Attachment V). Summary of the presentation and major discussions include:

- The monitoring site is operational since mid-June.
- NEC is working to include the data to the national environment information system.
- Sample analysis will be conducted at RNR laboratory and the national level database will be located at NEC.
- Identified electricity, security and communications as the major obstacles in operating the site. It is expected a permanent power supply line will be established to minimize the power failure.
- Further training was requested for the improvement of data quality.

Iran: Dr. Saeed Motesadi presented the progress in setting up the monitoring station in Iran (Attachment VI). Summary of the presentation and major discussions include:

- 9 potential sites have been identified for the establishment of monitoring stations under the Malé Declaration.
- DoE have purchased the land for the establishment of 1st monitoring site at Chamsari and the constructions have also been initiated. The site will be operational by November 2003 and the first set of data will be available by mid-December.
- National database will be located at DoE in Tehran.
- Delays due to the war situation in the neighbouring countries are identified as a major constraint.
- More financial support, regional data bank through the internet and meteorological studies were suggested for the consideration.
- Iran expressed its interest to host the next network meeting in Tehran.

Nepal: Md. Bidya Banmaly Pradhan presented the progress in the implementation in Nepal (Attachment VII). Summary of the presentation and major discussions include:

- The site established at Rampur is operational and the technical staffs conducting the monitoring are confident with sampling and analysis.
- Monitoring results for the first 4 months together with the site's details were presented.
- The participants observed that the PM10 concentration was relatively high for a rural station like Rampur.
- Requested for an automatic met station and the site for the met station has also been allocated close to the air quality monitoring station.
- Wet deposition monitoring equipment to be installed at Rampur by end of 2003.

Sri Lanka: Mr. C. K. Amarathunga presented the progress in implementing the Malé Declaration in Sri Lanka (Attachment VIII). Summary of the presentation and major discussions include:

7

- Site selection completed and the passive samplers are already installed at the site.
- The site will be fully operational by the end of October 2003.
- A 7 member advisory committee has already been established which is to meet once every three months.
- The national level database will be located in the CEA.
- A limnology study will be set up in near future, depending on funding.

India: Dr. Sengupta presented the current status of air quality monitoring and the progress in implementing the Malé Declaration in India (Attachment IX). Summary of the presentation and major discussions include:

- Proposed to establish 9 sites for monitoring transboundary air pollution.
- The first site has already been established at Port Caning and it will be further strengthened with the equipments from Malé Declaration.
- Presented preliminary results from the site at Port Caning. The results are currently being reviewed by the national advisory committee and will be submitted to UNEP as soon as it is cleared by the national advisory committee.
- A nine member advisory committee has already been established and will meet every 6 months.
- A terms of reference for the advisory committee has also been developed.
- Recommended inventory of sources; validated air quality models; scientific studies
 for site selection; study of emissions from neighboring (non participating) countries;
 and road map for improvement of fuel quality.

4. Further improvement of monitoring network

A discussion on further improvement of monitoring network was held with the aim of strengthening the monitoring network under the Malé Declaration. Major discussion includes:

- Quality of the data needs to be improved through the implementation of QA/QC programs.
- Characteristics of particulate matter could be useful for source characterization.
- The type of analysis (parameters) is important and the ideal is to have fewer high quality sites rather than a larger number of poor sites. The optimum number of monitoring sites required depends on what the data will be used for. Monitoring and modeling need to be closely linked. The monitoring at the first sites established needs to be of the highest quality possible before the establishment of further sites. Some countries requested for more sites to get an idea of transboundary air pollution and in the future this should be considered using advice from modeling approaches.
- Study of local situation is important for the site selection. Although it is difficult to select regional representative site, optimal site should be selected. Site selection criteria have recently been relaxed by MoC.
- Facilities for monitoring meteorological parameters need to be included; if there are no met stations nearby.

• It was informed that the technical details including manuals are already available under the Malé Declaration for monitoring the impacts like soil, aquatic environment and vegetation monitoring. NIAs are encouraged to initiate the impact monitoring, after getting data on work already done by networked agencies in fields like agriculture, health etc.

5. Further improvement of technical manual

The technical manual has been updated with the comments made in the network meeting 2002 and the experiences in conducting the monitoring thus far. Mr. Sagar Dhara of the MoC presented the technical manuals. Major discussions on technical manual included:

- Guidelines for HVS roof design need to be included in the manual.
- If flow rate of HVS becomes low during sampling period and is not adjusted then sample should be disregarded.
- Installations of wire mesh cover was recommended to protect the samplers from wild animals. For HVS and passive sampler the cage will not affect the sampling.
- In order to minimize the moisture differences, filter papers should be kept in the same condition (desiccator at room temperature) and timing before and after the sampling.
- In order to avoid overflow of wet only collector a bigger collection bottle (10 l) was suggested. MISU now have a recommended design for modification to increase capacity to 10 litres or more.
- The technical manual should provide alternative methods for sample analysis.
- Preservation of filter papers for further analysis could be included in the manual.
- To improve sensitivity of active SO₂ and NO₂ sampling can have two impingers in parallel.

The manual will be updated based on the comments and suggestions from the meeting.

6. Parallel activities on emission inventory and integrated modeling

Mr. Mylvakanam Iyngararasan and Mr. Rohana of UNEP RRC.AP and Dr. Johan Kuylenstierna and Mr. Harry Vallack of Stockholm Environment Institute (SEI) presented (Attachment X) the parallel activities on emission inventory and integrated assessment modelling (IAM) that has been initiated under Malé Declaration for assessment of transboundary air pollution. In addition to the emission inventory, a preliminary version of IAM was also demonstrated. Major discussions include:

- The main objective is to have an IAM tailored to regional needs and all decisions on structure etc to include consultations with NIAs (e.g. similar to the process of deriving emission regions)
- Local emission factors should be used wherever possible.
- Emission factors for small industries should also be considered in the inventory.
- PM_{2.5} could be included in the inventory in the future.
- The IAM, which is a graphical tool to link emissions with mitigation options, includes an atmospheric transfer model (MATCH) which takes the best internationally available emissions inventory and calculates deposition values that can then be compared to some indicator of impacts. The MATCH atmospheric

transfer model was developed for European conditions but has now been adapted for Asian conditions and includes all major topography (on 40 by 40km grid so not so accurate for complex terrain). SMHI has reasonable confidence in the model performance but this needs to be backed up by validation with Malé monitoring results and the results can only be considered to be preliminary until countries have produced their own emission inventories and have satisfied themselves with the performance of the MATCH model in South Asian conditions.

• A main menu with well-defined input and output facilities should be developed for running the model.

7. Other issues

Means of data sharing was discussed during this session. Major discussions include:

- NIAs will maintain the data at their national database.
- NIAs will send the data to UNEP on a monthly basis and UNEP will verify the data with the expert team before inputting into the regional database. The National Advisory Committee will give their advice on the data in parallel.
- Regional database will be made available for the network through the Intranet.
- E-mails and web based discussion forums will be utilised as much as possible for the information exchange among the network members.
- The network will always be consulted regarding analysis and publication of monitoring data.

8. Closing session

Mr. Rajamani, facilitator, summed up. In his summary, he expressed that the presentations and discussions were in high standard and it shows the development of the network with the establishment of the monitoring network. He expressed the hope that study of impacts and mitigation options will be worked out by NIA's. The involvement of all stakeholders was important. Requested the NIAs to try and get national support for more efforts, do not wait for external support. The meeting ended with the representatives from SACEP, SEI and UNEP thanking the facilitator, participants and organizers.

Attachment 1: Malé Declaration on Control and Prevention of Air Pollution and its Likely Transboundary Effects for South Asia Annual Network Meeting 2003

6-7 October 2003

Participant List

D 111	T
Bangladesh	
1. Mr. Md. Mizanur Rahman Assistant Chief Ministry of Environment and Forest Room# 1330 Building 3 Building#06	2. Quazi Sarwar Imtiaz Hashmi Deputy Director (Dev. & Planning) Department of Environment Paribesh Bhaban, Room No. 101
Bangladesh Secretariat, Dhaka	E-16, Agargaon, Sher-E-Bangla
Bangladesh	Nagar
Fax: 8802 8619210	Dhaka-1207, Bangladesh.
Tel: 8802 9570661	Fax: 880-2-9118682/ 9113328
Email: mazanforest@yahoo.com	(Telefax)
	Email: <u>hashmi@doe-bd.org</u>
3. Mr. Md Saifullah Talukder	
Research Officer	
Department of Environment	
Paribesh Bhaban, Room No. 101	
E-16, Agargaon, Sher-E-Bangla Nagar Dhaka-1207, Bangladesh	
Tel:8802-9118682/	
Fax: 9113328 (Telefax)	
Email: saifullah@doe-bd.org	
Bhutan	
4. Nedup Tshering	5. Mr. Jigme
Program Coordinator	National Environment Commission
National Environment Commission (NEC)	P.O. Box 466, Thimphu, Bhutan
Royal Government of Bhutan	Fax: 975-2-323385
P.O. Box 466, Thimpu, Bhutan	Tel: 975-2-323384/ 325856
Tel (O): 975-2-323384/ 325856	Email: jigme@nec.gov.bt
Fax (O): 975-2-323385	
Email: nedup@nec.gov.bt	
India	
6. Dr. B. Sengupta	7. Prof Dilip Biswas,
Member Secretary, CPCB,	Ex-Chairman, CPCB
Ministry of Environment & Forests,	40/14, CR Park, Kalkaji,
Parivesh Bhawan, East Arjun Nagar,	New Delhi - 110019
Delhi 110032, India	Tel.: 91-11-26463991/26287063,
Fax: 91-11- 22307078	9810043774 (mobile)
Tel: 91-11- 22303655, 00-91-9810043771	E-mail: <u>biswasmala@hotmail.com</u> .
Email :bsg1951@yahoo.com	

8. Dr. A.L. Aggarwal, President, Indian Association for Air Pollution Control, Delhi Chapter 241A, Pocket-I, Mayur Vihar, Phase-I, Delhi-91 Tel: 91-11-31074668, 011-31074668 (mobile) Fax: 91-11-6811833 Email: al_aggarwal@hotmail.com & dralal@vsnl.net Iran 10. Mr. Sadredin Ali pour 9. Dr. Saeed Motesaddi Zarandi Project Expert Director General for Air Pollution Research Air Pollution Research Office Bureau-DOE Environmental Research Center Environmental Research Center Hemmat Highway Hemmat Highway Pardisan Park Pardisan Park Tehran, Islamic Republic of Iran Tehran, Islamic Republic of Iran Tel (O): 98-21-8267996 Tel (O): 98-21-8267996 Fax (O): 98-21-8269920 Fax (O): 98-21-8269920 Email: motesaddi@yahoo.com & Email: motesadi@irandoe.org sadreddin1975@yahoo.com Nepal 12. Ms. Bidya Banmali Pradhan Environment Officer, MENRIS 11. Mr. Narendra Prasad Pokhrel, International Centre for Integrated Senior Divisional Chemist, MOPE. Tel: 977-1-4245367(O); 977-1-4273395 (R) Mountain Development (ICIMOD) Fax: 977-1-4242138(O); 977-1-4260110 (R) P.O. Box 3226, Kathmandu, Nepal Email: pokhreln@hotmail.com Tel (O): 977-1-525313 ext. 566; (R): 977-1-253044 Fax: 977-1-524509/536747 Email: bbanmali@icimod.org.np Sri Lanka 14. Mr. C. K. Amaratunga Deputy Director (Environmental 13. Mr. Anura Jayathilake Deputy Director Pollution Control) Central Environmental Authority Ministry of Environment & Natural Resources 'Sampathpaya', No 82, Rajamalwatta Road, 104, Robert Gunawardana Mawatha Battaramulla, Sri Lanka Battaramulla, Sri Lanka Tel: 94-1-2873452/3 Tel: 94-1-2887453, 94-74-412285 Fax: 94-74-412285 Fax: 94-1-2872605 Email: coordinator@wow.lk or lasith@slt.lk Email: ck@cea.lk 15. Prof. O.A.Ileperuma Department of Chemistry University of Peradeniya Peradeniya, Sri Lanka. Tel: 94 8 2388693, 2389152 (official) 94 8 2388848 (home)

Fax: 94 8 2388018 or 2389026 E-mail: oliveri@pdn.ac.lk

	4
Regional Facilitator	Monitoring Committee (MoC)
16. Raghunathan Rajamani Ex-Secretary, Ministry of Environment & Forestry Government of India 8-2-585/A/1, Road No.9, Banjara Hills Hyderabad-500034, India Fax: 91-40-2335 5480 Tel1: 91-40-2335 8320 E Mail: rraja@vsnl.net	17. Sagar Dhara E-303 Highrise Apts, Lower Tank Bund Rd Hyderabad 500 080, India Tel: 40 2753 6593, (40) 55137296 Fax: 40 2780 8808 E mail: sagdhara@hd1.vsnl.net.in
18. Mehboob Elahi Director General, South Asia Cooperative Environment Programme (SACEP) #10 Anderson Road, Colombo 5, Sri Lanka Fax: 94-1-2589369 Tel1: 94-1-2589787 Tel2: 94-1-2589376 Email: melahi@eureka.lk	19. Pradyumna Kumar Kotta Project Coordinator, South Asia Cooperative Environment Programme (SACEP) #10 Anderson Road, Colombo 5 Sri Lanka Fax: 94-1-2589369 Tel1: 94-1-2589787 Tel2: 94-1-2596443 E-Mail: pk_sacep@eureka.lk
20. Dr. Johan Kuylenstierna Director, Stockholm Environment Institute - York (SEI-Y) University of York York Y010 5DD, UK Tel: +44 1904 432897 (general), 432892 (direct) Fax: +44 1904 432898 Email: jck1@york.ac.uk	21. Harry Vallack Research Associate Stockholm Environment Institute - York (SEI-Y) University of York York Y010 5DD, UK Tel: +44 1904 432897 (general), 432894 (direct) Fax: +44 1904 432898 Email: hwv1@york.ac.uk
22. Dr Kevin Hicks Research Associate Stockholm Environment Institute - York University of York York ,Y010 5DD ,UK Tel +44 (0) 1904 432 896 Fax +44 (0) 1904 432898 Email: khicks@york.ac.uk	

SMHI

23. Dr Magnuz Engardt Swedish Meteorological and Hydrological Institute (SMHI)

S-601 76

Norrkoping ,Sweden

Tel +46 11 495 85 82

Fax +46 11 495 80 01

Email: Magnuz.Engardt@smhi.se

UNEP RRC.AP

24. Surendra Shrestha

Director

UNEP RRC.AP

Asian Institute of Technology

P.O. Box 4, Klong Luang, Pathumthani 12120

Thailand

Fax: 662 516 2125 Tel: 662 516 2124

E Mail: Surendra@rrcap.unep.org

25. Mylvakanam Iyngararasan Senior Programme Officer UNEP RRC.AP, Asian Institute of Technology P.O. Box 4, Klong Luang, Pathumthani 12120,

Thailand

Fax: 662 516 2125, Tel: 662 524

6239

E Mail: <u>iyngara@rrcap.unep.org</u>

26. Naw Wah Wah Htoo

Programme Officer

UNEP RRC.AP, Asian Institute of

Technology

P.O. Box 4, Klong Luang, Pathumthani 12120,

Thailand

Fax: 662 516 2125 Tel: 662 524 6234

E Mail: wahwah@rrcap.unep.org

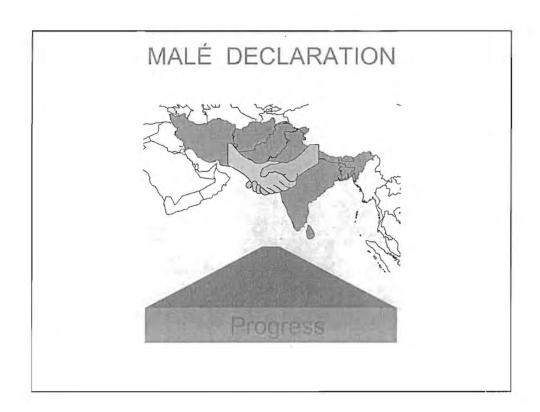
27. Rohana Deshapriya Rezel

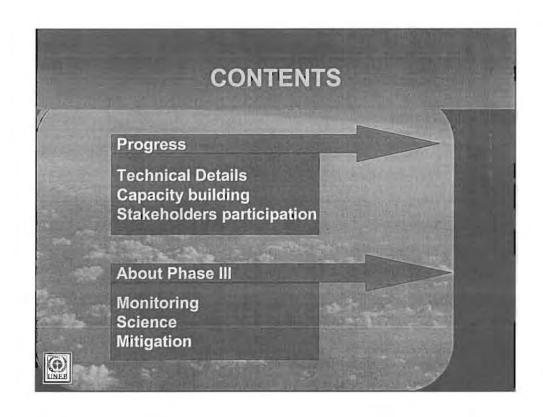
Research Assistant

UNEP RRC.AP, Asian Institute of

Technology

P.O. Box 4, Klong Luang,

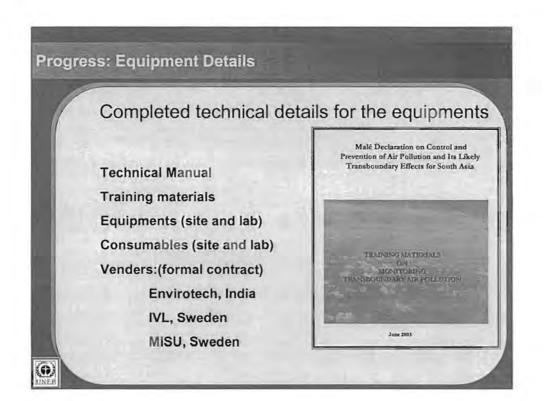

Pathumthani 12120, Thailand

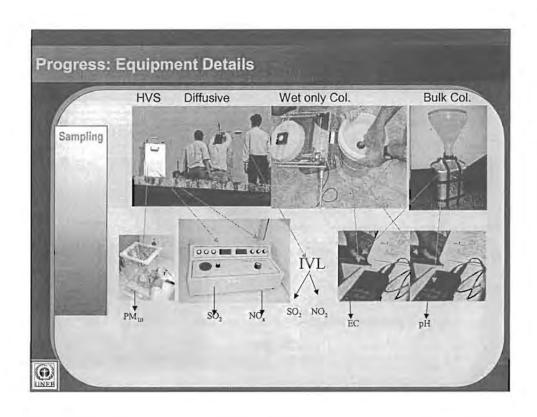

Fax: 662 516 2125 Tel: 662 524 6492

E Mail:

rohana.rezel@rrcap.unep.org

Attachment II
Presentation on Progress science network meeting 2002





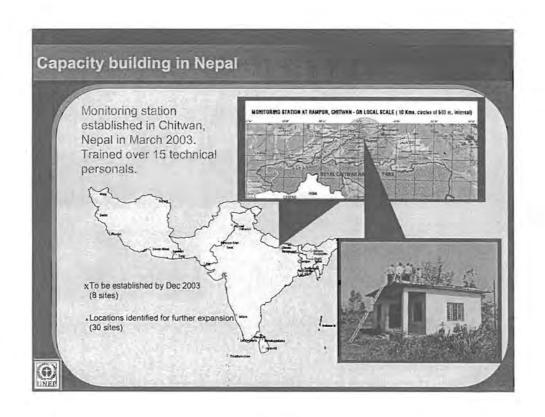
Last Network meeting was held in July 2002 at Kathmandu reiterated the need for Capacity building through training and equipments

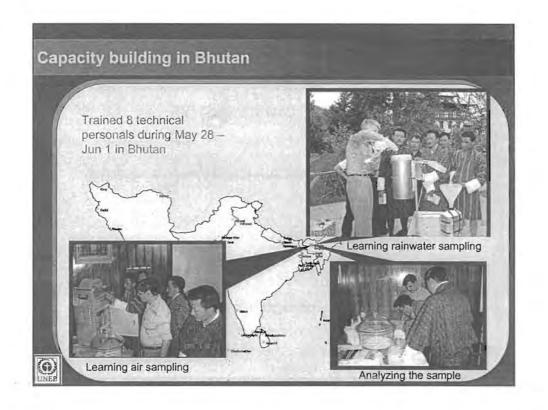
Progress: In-country training program

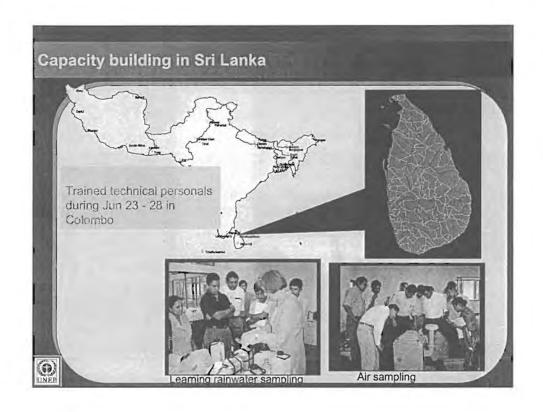
Monitoring air concentration using HVS

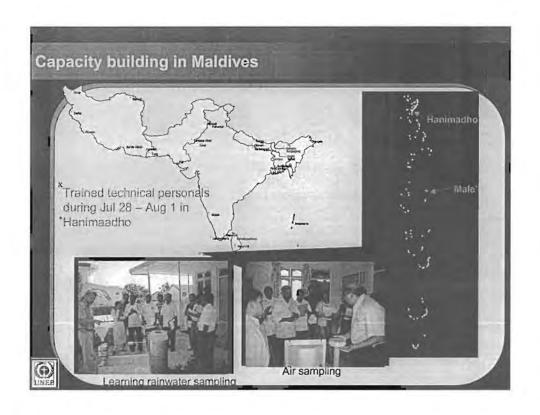
- Sampling
- Analysis

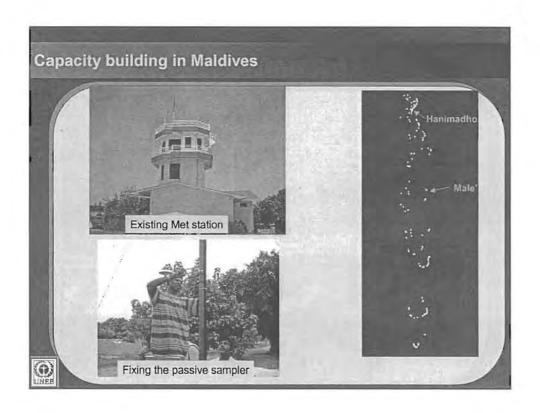
Monitoring air concentration using Passive sampler

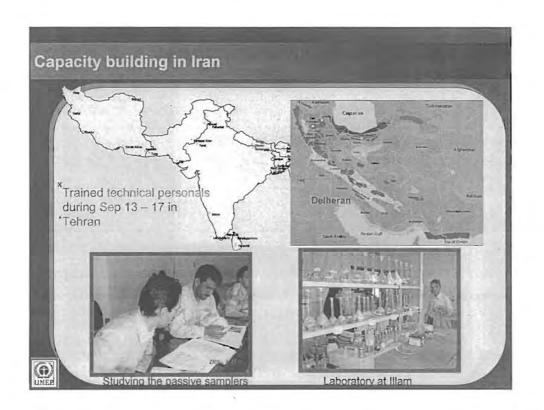

- Sampling
- · Sample handling

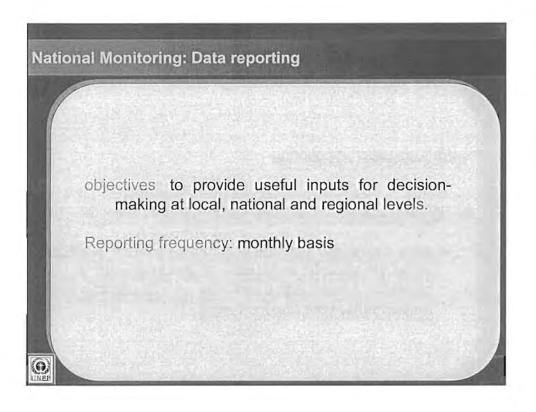

Monitoring wet deposition

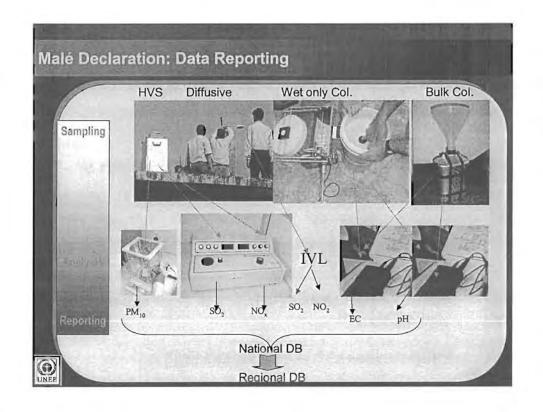

- Sampling by wet only collector
- Analysis of rainwater for pH and EC


QA/QC and Data management


OBJECTIVES: to familiarize the participants with the handling of air monitoring instruments and laboratory equipment.







National Reporting: Frequency

Wet deposition monitoring

- Weekly composite samples using wet only collector.
- -Weekly composite samples using bulk collector. (Collector must be cleaned thoroughly at the beginning of each week to ensure that there is no dry deposition in the collector from the previous week)

National Reporting: Frequency

Air Concentration Monitoring

Gaseous samples: 24 hr samples [9 am - 9 am]; Sampling to be done for 10 days/month between 5th - 25th of each month.

Dust samples: 24 hr samples [9 am - 9 am next day]. Sampling to be done 10 days/month between 5th - 25th of each month.

(Valid sample: when machine up time is >60% of sampling time)

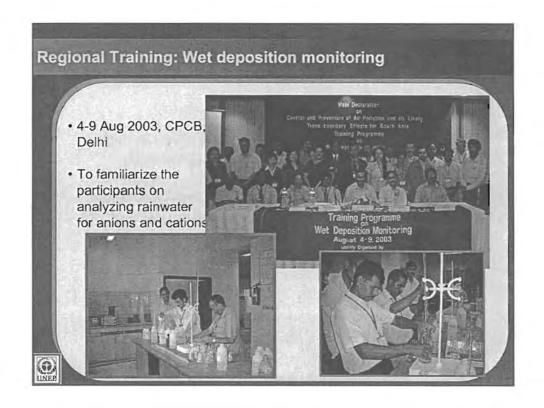
0

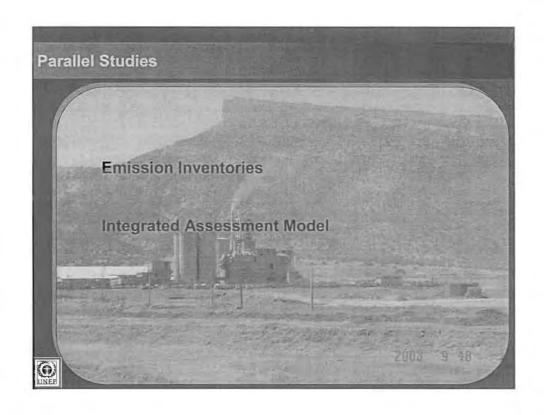
Diffusive (passive) samplers: Monthly

National Reporting: Meteorological measurements

wind direction/speed, temperature, humidity, precipitation amount and solar radiation

(in accordance with the measurement frequency of the meteorological monitoring system of each country)


(0)

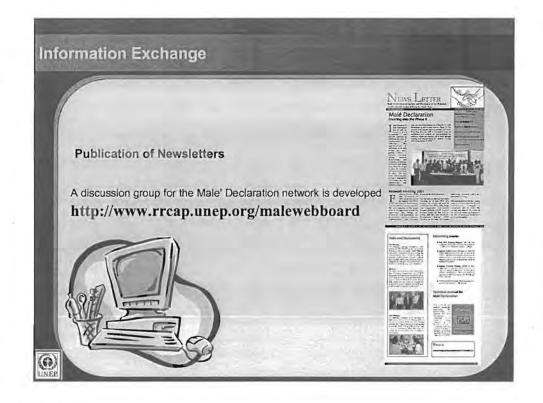

National Reporting: Site Details

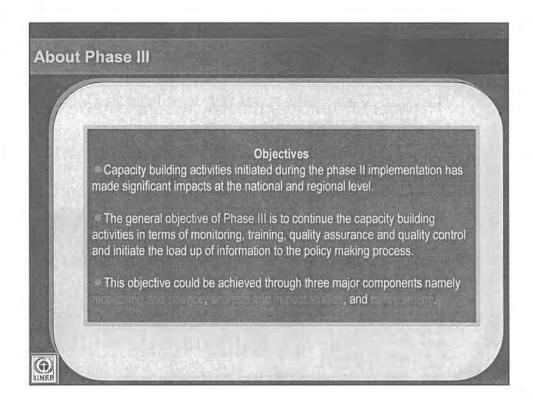
Site details such as land use, potential contamination sources, geographical description, climate need to be documented using the reporting form S1, S2, and S3.

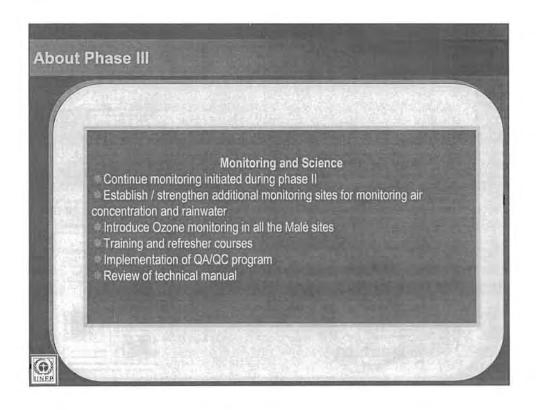
If the information submitted changes, the up-to-date information should be reported as soon as possible

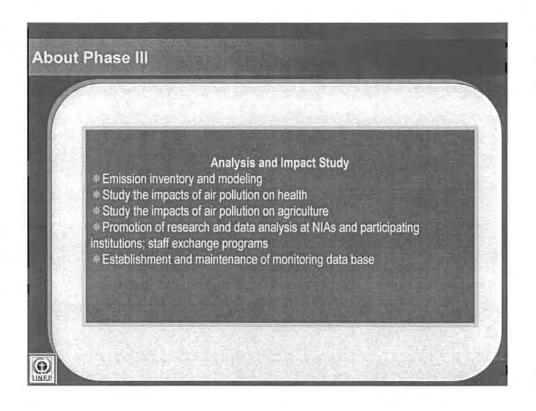
Stakeholder's participation

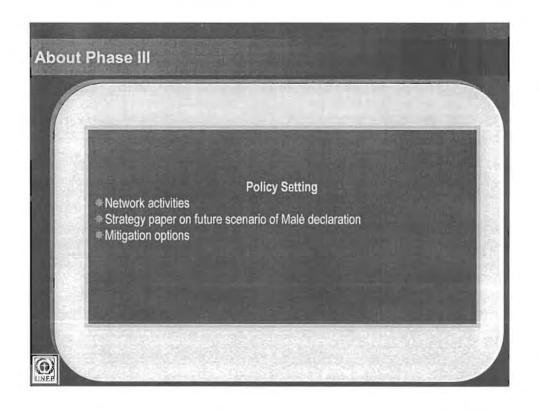
National Stakeholder meeting was held in Delhi on 24 September 2002.


Dissemination


Recommendations:


- · clear scientific findings;
- Locate the source of concern and manner in which it can be addressed;
- Capability building should receive priority;
- · Information sharing;
- · Review action plans;
- Need financial support and countries to step up their investments, especially in bind





Attachment III
Preparation of national implementation plan by Bangladesh

Annual Network Meeting: 2003 Male Declaration of on Control and Prevention of Air Pollution and Its Likely Transboundary Effects for South Asia

Presentation on the National Monitoring Plan of Bangladesh

By
Quazi Sarwar Imtiaz Hashmi
Deputy Director (Dev & Planning)
Department of Environment
Ministry of Environment and Forest

Background Information

Phase I: Preparation of National Action Plan for Bangladesh on Control and Prevention of Air Pollution and its Likely Transboundary Effects

- National Action Plan
- National Database
- Proposed Monitoring Stations

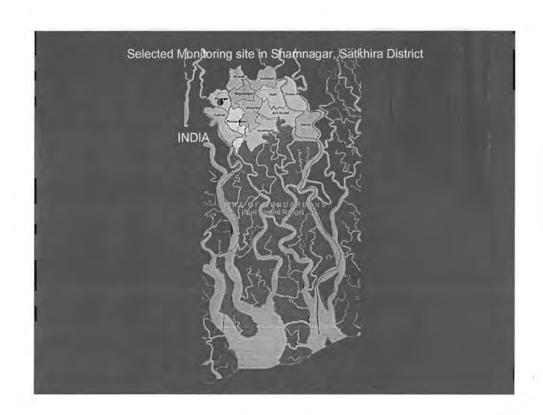
Background Information

Phase II: Implementation of Male on Control and Prevention of Air Pollution and its Likely Transboundary Effects

- Expanding Network
- Capacity Building
 - Training
 - Supply and Installation of Equipments
 - Establishment of Monitoring Stations
- Studying the Transboundary Effects of Air Pollution

Project Activity Status

- Expanding Network
 - - Representative from BMD
 Representative from BAEC
 Representative from BAEC
 Representative from Departmental Science, KU


 - Representative from Department of Chemistry, DU
 Representative from Department of Microbiology, DU
 Representative from IMED

 - Representative from CEN
 Representative from FBCCI
 Representative from BARC

This advisory committee will provide advisory services to the Department of Unvironment and other organizations involved in monitoring exercise. It will also act as an information clearing house.

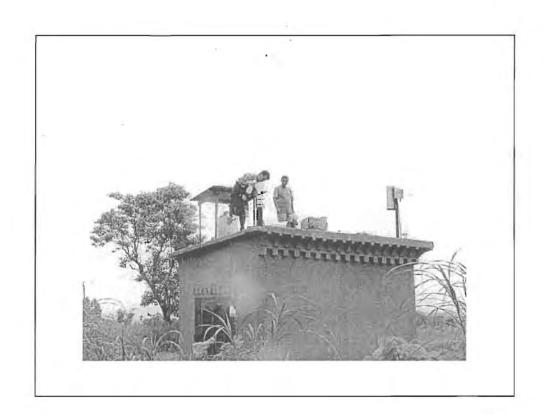
Project Activity Status

- Monitoring and Capacity Building
 - Monitoring site is selected and land procurement is under process
 - Construction will follow the schematic diagram proposed by Monitoring Committee
 - Necessary Monitoring Equipments have already been transfer from UNEP and under clearing process
 - Two Member National Team has attended in the Training on Technical Issues during 20-24 May 2002

Project Activity Status

- Monitoring and Capacity Building
 - Local arrangement to install the monitoring station on going
 - Recruitment of Technical Staff is in the final stage
 - In-country training programme will be organized during 19-23 October, 2003
 - In-country training report will be submitted after the completion of training workshop

Project Activity Status


- Monitoring and Reporting
 - Monitoring and reporting will be carried out as per UNEP guideline and manual
 - Data will be stored according to the specified format
 - Digital data will be sent to RRC.AP for the centralized database
 - Regular Reporting as per schedule

Project Activity Status

- Organize National Stakeholders Meeting
 - End of November 2003
 - Report will be submitted in December 2003
- Linkage to other Projects/Oganizations
 - It has been accomplished through expanding national network

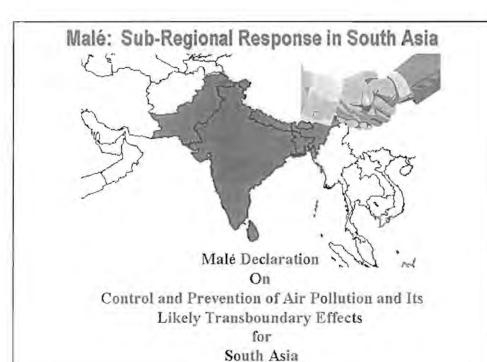
Thank You

Attachment IV
Preparation of national implementation plan by Bhutan

Attachment V
Preparation of national implementation plan by India

MALE' DECLARATION ON CONTROL AND PREVENTION OF AIR POLLUTION AND ITS LIKELYTRANSBOUNDARY EFFECTS FOR SOUTH ASIA

COUNTRY PAPER - INDIA



Dr. B. Sengupta Member Secretary Central Pollution Control Board Ministry of Environment & Forests

New Delhi

Email: Website: bsg1951@yahoo.com http://cpcb.delhi.nic.in

Paper presented at Male' declaration Network Meeting to be held at Dhaka during 6-8 October, 2003

MAJOR ENVIRONMENTAL ACTS IN INDIA

- The Water (Prevention & Control of Pollution) Act, 1974
- The Water (Prevention & Control of Pollution) Cess, Act, 1974 as amended in 1991.
- . The Air (Prevention & Control of Pollution) Act, 1981
- The Environment (Protection) Act, 1986
- The Public Liability Insurance Act, 1991
- The National Environmental Tribunal Act, 1995
- The National Environment Appellate Authority Act, 1997

CENTRAL POLLUTION CONTROL BOARD

- APEX BODY IN INDIA FOR PREVENTION AND CONTROL OF ENVIRONMENTAL (AIR, WATER, NOISE, SOLID WASTE) POLLUTION.
- > TECHNICAL AND SCIENTIFIC WING OF MOEF
- SET UP UNDER PARLIAMENT ACT (WATER ACT 1974, AIR ACT 1981)
- SUPREME COURT/HIGH COURT EXPECTATIONS
- RESPONSIBLE FOR SETTING ALL STANDARD AND POLICIES FOR CONTROL OF ENVIRONMENTAL POLLUTION BASED ON SCIENTIFIC STUDY.
- ENVIRONMENT PROTECTION ACT, 1986 (SECTON 5, DELEGATED BY MOEF)
- NEW RESPONSIBILITIES GIVEN UNDER VARIOUS RULES / ACTS
 - NOISE POLLUTION CONTROL
 - BIOMEDICAL RULES
 - > HAZARDOUS WASTE MANAGEMENT
 - MUNICIPAL SOLID WASTE MANAGEMENT
 - > EIA NOTIFICATION
 - FLY ASH MANAGEMENT
 - COAL BENEFICIATION
 - VEHICULAR POLLUTION CONTROL

MAJOR AIR POLLUTION ISSUES IN INDIA

- Major Cities (Vehicular Air Pollution)
- 2. 24 Critically polluted area (Industrial Air Pollution)
- 3. Indoor Air Pollution (Rural Area)

AIR POLLUTION PROBLEM IN INDIA

I. MAJOR CITIES

(DELHI, KOLKATA, MUMBAI, GHENNAI, AHMEDABAD, BANGALORE, HYDERABAD, PUNE, KANPUR).----VEHICLES, SMALL/MEDIUM SCALE INDUSTRIES

II. PROBLEM AREA

AREA	TYPE OF POLLUTING INDUSTRIES
SINGRAULI	- POWER PLANTS, MINING, ALUMINIUM INDUSTRY.
KORBA	- POWER PLANTS, ALUMINIUM INDUSTRY, MINING.
VAPI / ANKALESHWAR	- CHEMICAL INDUSTRIES.
GREATER COCHIN	 OIL REFINERIES, CHEMICAL, METALLURGICAL INDUSTRIES
VISAKHAPATNAM	 OIL REFINERY, CHEMICAL, STEEL PLANTS.
HOWRAH	- FOUNDRY, REROLLING MILLS, VEHICLES.
BURGAPUR	- CHEMICAL INDUSTRIES, POWER PLANTS, STEEL PLANTS.
69	

AREAS TYPE OF INDUSTRY

MANALI - OIL REFINERIES, CHEMICAL

TAMIL NADU INDUSTRY, FERTILIZER INDUSTRY

CHEMBUR - REFINERIES, POWER PLANT,

FERTILIZER INDUSTRY.

MANDI - SECONDARY STEEL INDUSTRY

GOBINDGARH

DHANBAD - MINING, COKE OVEN.

PALI - COTTON TEXTILE, DYEING.

NAGAFGARH DRAIN - POWER PLANTS, VEHICLES.

BASIN

ANGUL-TALCHER - MINING, ALUMINIUM PLANTS,

THERMAL POWER PLANTS.

AREAS TYPE OF INDUSTRY

(4)30

BHADRAVATI - IRON & STEEL, PAPER INDUSTRY

KARNATAKA

DIGBOI - OIL REFINERY

JODHPUR - COTTON TEXTILE, DYE

KALA-AMB - PAPER, ELECTROPLATING

NAGDA-RATLAM - VISCOSE RAYON, CAUSTIC, DYES DISTILLERY

NORTH ARCOT - TANNERIES

PARWANGO - FOOD PROCESSING UNIT ELECTROPLATING

PATANCHERU- - ORGANIC CHEMICAL, PAINTS, BOLLARAM PETROCHEMICAL INDUSTRY

TARAPUR - CHEMICAL INDUSTRY

REASONS FOR AIR POLLUTION IN INDIA

- POOR QUALITY OF FUEL (COAL, DIESEL, PETROL, FUEL OIL)
- OLD PROCESS TECHNOLOGY (SPECIALLY IN S.S.I.)
- WRONG SITING OF INDUSTRIES
- NO POLLUTION PREVENTIVE STEP TAKEN (EARLY STAGE OF INDUSTRIALISATION)
- POOR VEHICLE DESIGN (2-STROKE)
- UNCONTROLLED GROWTH OF VEHICLE POPULATION IN ALL MAJOR CITIES / TOWNS.
- . NO POLLUTION PREVENTION AND CONTROL SYSTEM IN SMALL/ MEDIUM SCALE INDUSTRY (S.M.S)

POOR COMPLIANCE OF STANDARD IN

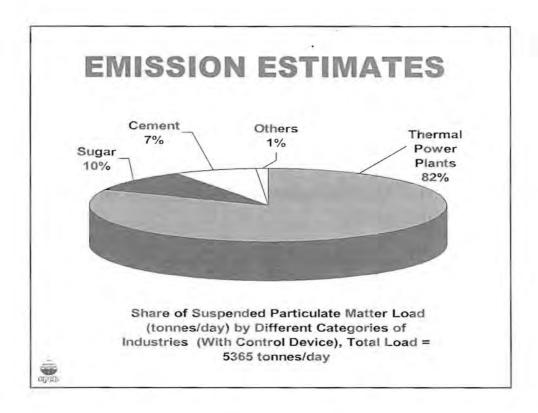
S.M.S

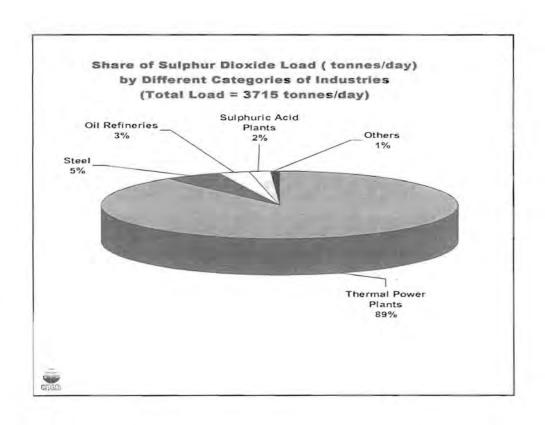
MAJOR ENVIRONMENTAL ISSUES IN INDIA

- Air Quality Problem in Major Cities (45) and Metro Cities (7) with respect to RSPM/PM₁₀ and NO_x.
- Toxic Pollutants (VOC,Benzene,PAH) level in Seven Cities generally exceeding the guidelines.
- 3. Industrial Air Pollution Control Major Issues:
 - Thermal Power Plants (fly ash management, emission of SO₂/PM)
 - Iron & Steel Industry (coke oven plants emissions, waste utilization, BOD plant performance)
 - Aluminium Industry (pot room secondary emission)

Contd...

- Paper & Pulp Industry (Emission from Chemical Recovery Plant, Odour issues)
- Oil Refinery (SO₂ emission, VOC emission, Fugitive emission).
- > Cu / Zn (SO, emission, Sludge disposal)
- Pollution Control from Small Scale Industry (3 million).
- Stone Crusher
- Lime Kiln
- Foundries
- Electroplating
- " Rerolling Mills
- a Brick Kiln


Contd...

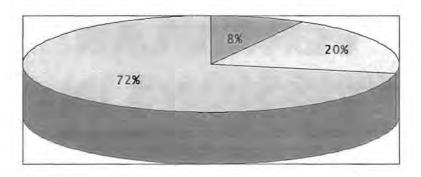

- Coal Quality (Clean Coal Technology, High Ash)
- 7. Fuel Quality (Benzene, Sulphur)
- 8. Pollution control from in-use Vehicles improvement of (I/M System)
- 9. Fly Ash Management (100 million tonne generation)

INVENTORY OF INDUSTRIAL EMISSIONS IN THE COUNTRY

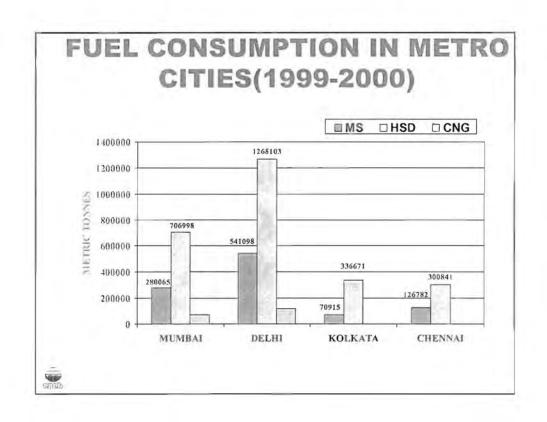
VEHICULAR POLLUTION PROBLEMS IN INDIA

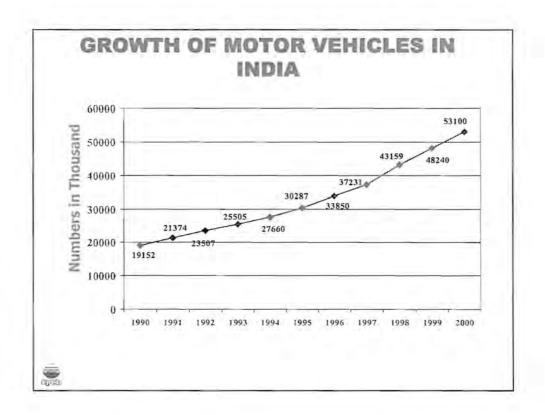
- · High vehicle density in Indian urban centers
- Older vehicles predominant in vehicle vintage
- * Inadequate inspection & maintenance facilities
- * Predominance of two stroke two wheelers
- * Adulteration of fuel & fuel products
- Improper traffic management system & road conditions
- High levels of pollution at traffic intersections
- Absence of effective mass rapid transport system & intra-city railway networks
- High population exodus to the urban centers

INVENTORY OF VEHICULAR EMISSIONS IN THE COUNTRY


ESTIMATED AIR POLLUTION LOAD IN MAJOR CITIES

CITY	POLLUTION LOAD (TONNES/DAY)	NUMBER OF ON- ROAD VEHICLES (LAKHS)
Delhi	2686	34.25
Mumbai	885	8.4
Bangalore	971	12.4
Kolkata	449	6.6
Chennai	786	11.5
Ahmedabad	638	7.8
Hyderabad - Secunderabad	1123	10.99


CONTRIBUTION OF VARIOUS SECTORS TO AMBIENT AIR QUALITY IN MAJOR CITIES


■Domestic □Industrial □Vehicular

AIR QUALITY MONITORING IN INDIA

NATIONAL AIR QUALITY MONITORING

- Started in 1984 7 Station (Manual Station)
- By 2000 Increased to 295 Stations (Operated and Maintained by SPCB/CPCB/ Universities, etc. and funded by CPCB)
- Monitoring in Delhi
 - 2 Continuous AQMS (set up under GTZ assistance)
 - 1 Continuous AQMS (CPCB)
 - 2 Mobile Vans (with GTZ assistance)
 - 6 Manual AQMS
- Monitoring by Industry/Universities/ Other Institutes

200 Stations (approx.)

Air Quality Monitoring

Parameters Monitored

Criteria Pollutants - SPM, SO₂, RSPM/PM₁₀, NOx, CO, Pb

Specific Pollutants - Poly aromatic Hydrocarbons
Benzene / Xylene / Toluene
Ground level ozone
(24 hourly, 8 hourly, 1 hourly)

CALIBRATION FOR ACCURACY OF DATA

CALIBRATION

- Calibration of a system in its original meaning is to check up of any any scale, reading or value, digital or analog by comparison with an absolute standard.
- The calibration of any measuring system is very important to get meaningful results.
- The response of most of the analyser has a tendency to change somewhat with time (drift), the calibration must be updated (or the analyser response must be adjusted) periodically to maintain a high degree of accuracy.

CALIBRATION STANDARD

PRIMARY STANDARD

Primary standard is certified to traceable to the NBS or SRM.

Ex.:

Static Injection System, Soap bubble meters, volumetric burettes etc.

TRANSFER STANDARD

A transfer standard is a device that is certified against a primary standard. These standards usually travel to the monitoring stations.

ZERO AND SPAN GAS

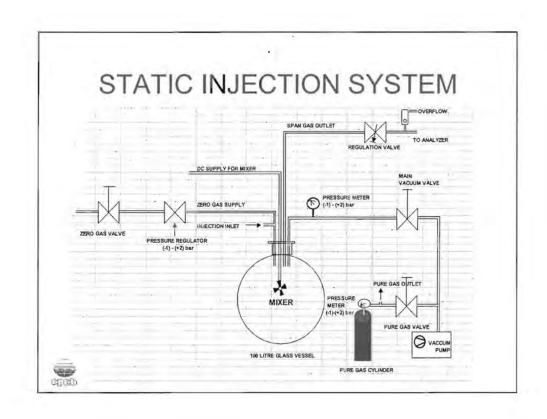
· ZERO GAS

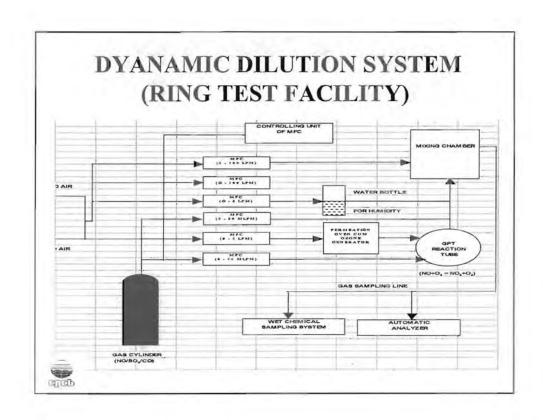
Zero gas is defined that the gas which does not contain any type of impurities or external material. The concentration of zero gas must be zero in respect of pollutant being calibrated.

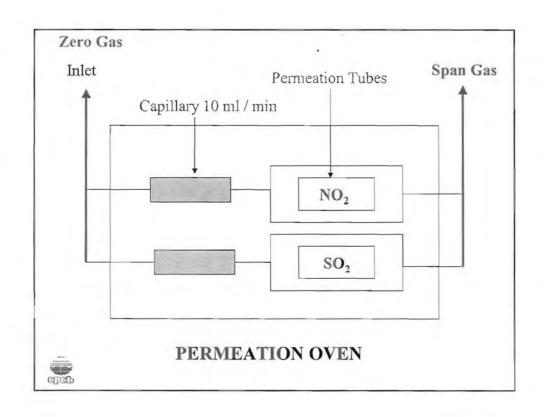
· SPAN GAS.

The span gas must be capable of providing an accurate, stable and reliable concentration of measured gas for at least five concentration, equally spaced between zero and full scale.

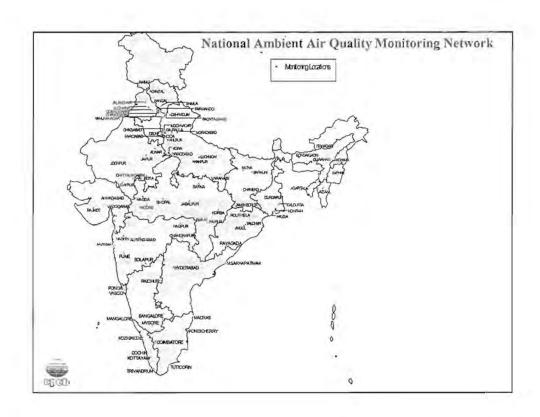
FREQUENCY OF CALIBRATION

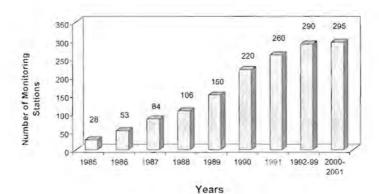

An analyser should be calibrated (or re calibrated):


- a) Upon initial installation;
- b) Following physical relocation;
- After any repairs or service that might affect its calibration;
- d) Following an interruption in operation of more than a few days; and
- e) Upon any identification of analyser malfunction.


CALIBRATION OF AUTOMATIC ANALYSER

- 1) Static Injection System;
- 2) Dynamic Dilution System; and
- 3) Permeation System.




		Committatio	DE LO	Archies ii Air		Method of Minesamenous
Folkstan(Time Weighlad Average	industriai Assa		Residential, Rural and other Areas	Samme Area	
Situria Dioeth (50-)	Annital Average*	80 µg/m³		60 pg/m	15 pame	Inproved West and Gaeke Method Ultraviolet Fluorescence
(N. 5.1)	24 Hoors	120 <u>jug</u> ana		60 µg/mil	30 pamil	*
Dxides of Nilrogen as NO.	Annual Average*	ao hBung		¢o μg/m²	15 jug/ms	1 Jacob & Hockhelser modified (NaOH NaAsOL) Method
	24 Hours Average	120 agents		STORY CE	30 pg/m=	2. Gas Phase Chemilianiniscence:
Supposed Particularie	evinual evenings.	300 Manue		140 (6)/97/2	10 100 ms	Figh Volume Sampling (Average flow arts not less than 1,1m2minus)
Middler (SPM)	Average**	550 p.zm		20d pg/or	the parmi	
Result Mile Particulaie Maltér	Asinua) Average"	the premi		(ii) jupitry	201030	Resoluble Particulate Matter Sample
Dies less than 10pm) (RPA)	24 Hours Average**	The parent		300 mous	40 PELO2	
Load (Pb)	Armost Average ^a	1 () (s)/m-		0.75 ppm ⁹	11.50 pymi-	AAS Mathod after sampling wiling EPM 2000
	24 hour Average**	1.5 (m/m)		d G pigonia	0.75 pg/m ³	or incurrational filter paties
Cartann Finnoxide (CO)	& House Average**	5.0 mg/m²		2 E morres	1.0 mg/m²	Non dispersive infrared Spirictronicapy
	1 Hour Average	iff hogym		4.0 mg/m)	2.0 mg/m ²	
honoras ca (NH)	Armigi Awarage*			a Lingania		~
	24 Han			$-0.99\mathrm{MeV}_{\mathrm{S}}$		

Sensitive areas - sensitive area may include the following:

- to kms all around the periphery of health resorts so notified by State Pollution Control Boards in consultation with department of public health of the concerned state.
- 10 kms all around the periphery of biosphere reserves, sanctities and national parks, so notified by Ministry of Environment and Forest or concerned states.
- 5 kms all around the periphery of an archeological monument declared to be of national importance or otherwise so notified A.S.I. in consultation with State Pollution Control Boards.
- 4) Areas where some delicate or sensitive to air pollution crops/important to the agriculture/horticulture of that area are grown so notified by State Pollution Control Boards in consultation with department of agriculture/horticulture of concerned state.
- 5) 5 kms around the periphery of centers of tourism and/or pilgrim due to their religious, historical, scenic or other attractions, so notified by department of tourism of the concerned state with State Pollution Control Boards.

Growth of Ambient Air Quality Monitoring Stations under N.A.M.P.

NON-ATTAINMENT AREAS

Observed Annual Mean Concentration of a Criterion Pollutant

Exceedence = -----

Factor

Annual Standard for the Respective Pollutant and Area Class

The Four Air Quality Categories are:

- . Critical Pollution (C): When EF is more than 1.5;
- . High Pollution (H): When EF is between 1.0 1.5;
- Moderate Pollution (M): When EF is between 0.5 -1.0;
- . Low Pollution (L): When the EF is less than 0.5.

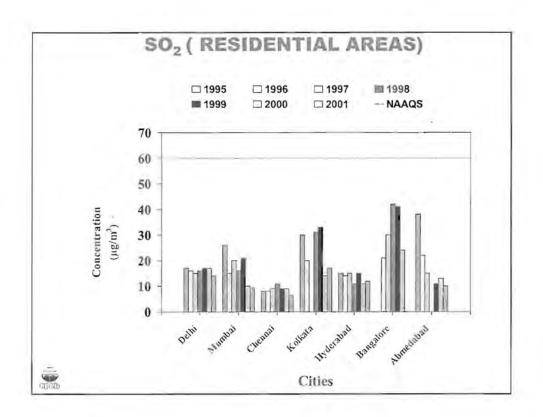
GIVAD.

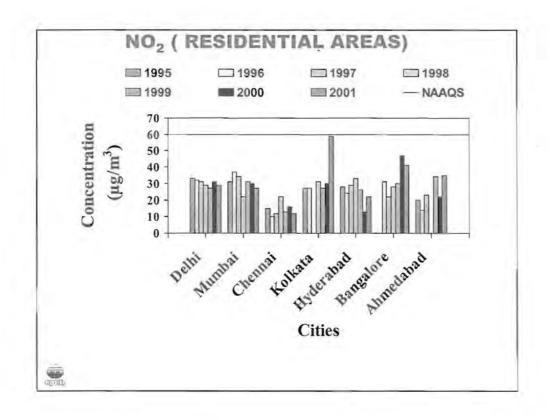
Pollutants -	S	0,	N	0,	SF	M
Area Class -+ State / City ↓	Ţ	R	Ť	Я	1	R
Andhra Pradesh						
Hyderabad	L	L	M	L	M	M
Visakhapatnam	Ļ	L	Ĺ	L	L	M
• Assam						
Guwahati	e.	L	1.0	M	T.e.	H
• Bibar						
Dhanbad	L	L	1.	L	M	C
Jharia	L	-2 -	I.	4.5	H	- 1
Jamshedpur	M	M	M	M	M	С
Patna	-	L	17.	2.	J-9	C
• Delhi						
Delhi	L	L	M	14 -	M	C

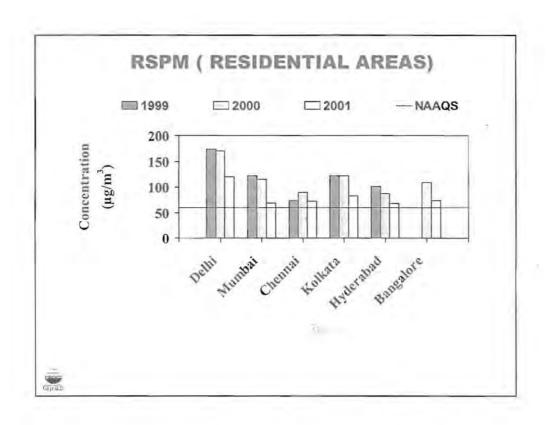
Pollutants>	SO ₂		NO ₂	SPM		
Area Class → State / City ↓	1	R	1	R	1	R
• Gujarat						
Ahmedabad	L	L	Ł	M	140	-
Goa						
Ponda	- 4	L	-	L	57	M
Vasco	L	9-0	L	1-	L	-
· Himachal Pradesh						
Damtal	(S)	L		L	1.00	C
Parwanoo	L	L	L	L	M	C
Paonta Sahib	L		1.	140	L	-
Shimla	- 2	L		L.	- 54c	L
• Haryana						
Yamuna Nagar	L	-	L.	-	M	

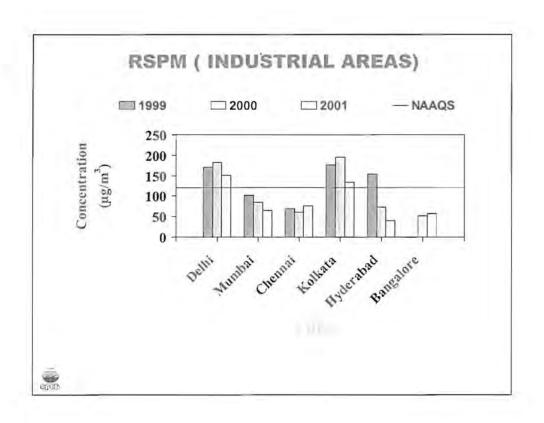
Pollutants ->	SO ₂		NO ₂		SPM	
Area Class → State / City ↓		R	1.	R	1	R
+ Karnataka						
Banglore	L	L	L	(4)	L	C
Mysore	L	- L	L	- 2-	L	- 4
Kerala						
Cochin	M	L	L	0-1	L	
Kottayam	L	10-	٤		L	1.
Kozhikode	L	L	L	- L	L	L
Palakkad	L	-	M	118	L	14
Thiruvanthapuram	L	L	L	L.	L	L
Maharashtra						
Mumbai	L	L	L.	M	-	1-
Chandrapur	L	L	M	7/1	L	Н

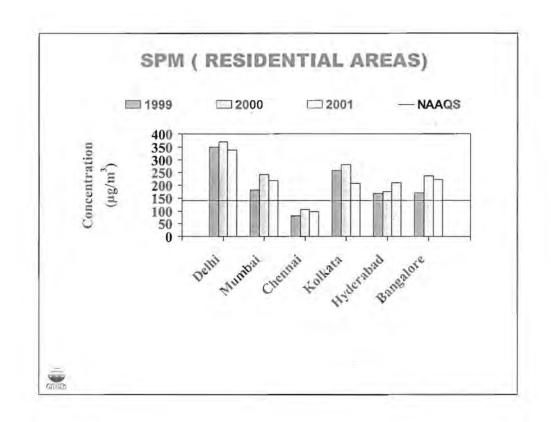
Pollution Level	Annual Mean Concentration Range (μg / m³) RSPM Levels			
	Industrial (I)	Residential (R)		
Low (1)	H+ 60	9 - 30		
Moderate (M)	60 - 120	30 - 60		
High (H)	120 - 180	60 - 90		
Critical (C)	>180	> 9/1		
Area Class —> State / City ↓	T	R		
· Andhra Pradesh				
Hyderabad	M	Н		
Visakhapatnam	M	C		
• Assam				
Guwahati	_	C		
• Delhi				
Delhi	C	C		
+ Gujarat				
Ahmedahad		Ċ		

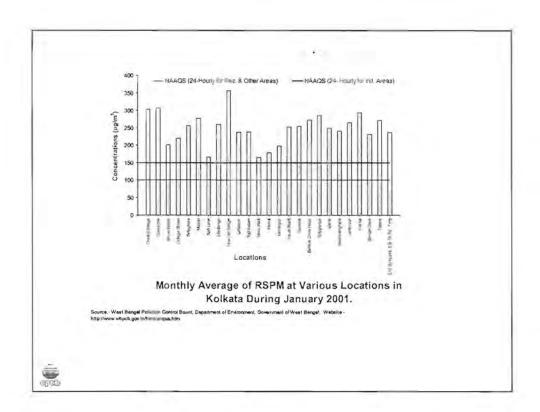

Pollution Level	Annual Mean Concentration Range (μg / m ³ RSPM Levels			
	Industrial (I)	Residential (R)		
Law(1)	$\theta - 6\theta$	0-30		
Moderate (M)	60 – 120	30-60		
High (H)	120 - 180	60-90		
Critical (C)	>180	> 90		
Area Class	T.	R		
State / City +				
· Himachal Pradesh				
Parwanoo		- 11		
 Karnataka 				
Banglore	À,	11		
Mysore	M			
+ Kerala				
Kochi	Н	C		
Kottayam	L	ii ii		

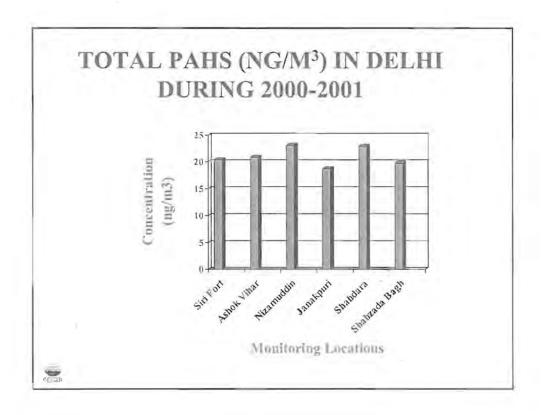

Pollution Level	Annual Mean Concentration Range (μg / m³) RSPM Levels			
	Industrial (I)	Residential (R)		
Low (L)	0 - 60	0-30		
Moderate (M)	60 - 120	30 - 60		
High (H)	120 - 180	60 - 20		
Critical (C)	>180	> 90		
Area Class -> State / City ↓	- J	R		
Kozhikode	i.	M		
Thiruvanthapuram	C	C		
Palakkad	I.	-		
 Madhya Pradesh 				
Bhopal	С	C		
Indore	C	C		
Jabalpur	•	H		
Nagda	M	C		

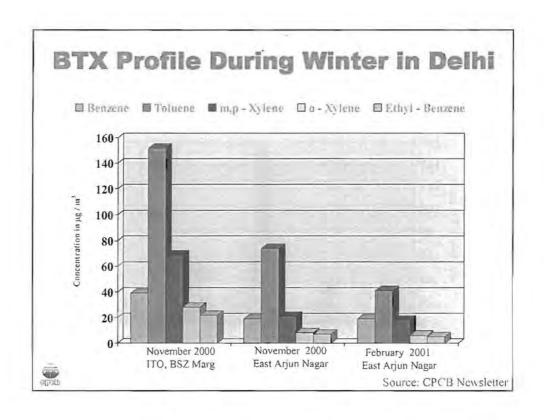

Pollution Level	Annual Mean Concentration Range (μg / m³) RSPM Levels			
	Industrial (I)	Residential (R)		
Low (L)	0 = 60	$\theta - 3\theta$		
Moderate (M)	60 – 120	30-60		
High (H)	120 - 180	60 ~ 90		
Critical (C)	>180	> 90		
Area Class → State / City ↓	1	R		
Satna	H	С		
Maharashtra				
Mumbai	M	Н		
Nagpur	М	С		
Nashik	M	C		
Pune		C		
Solapur	C	t		

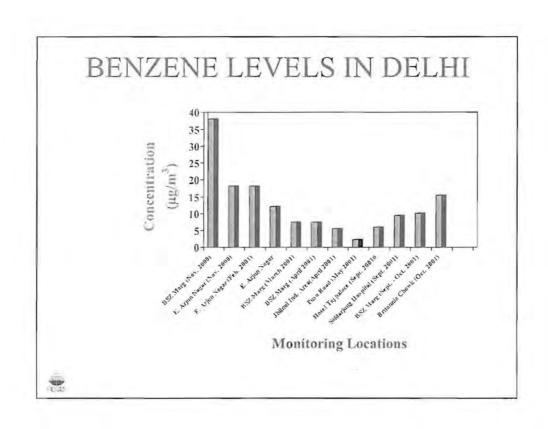

TRENDS IN MEGA CITIES

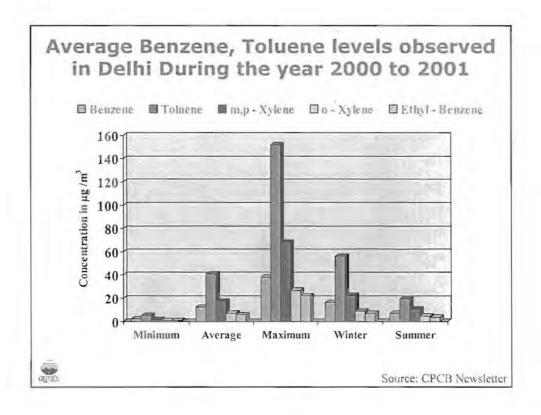










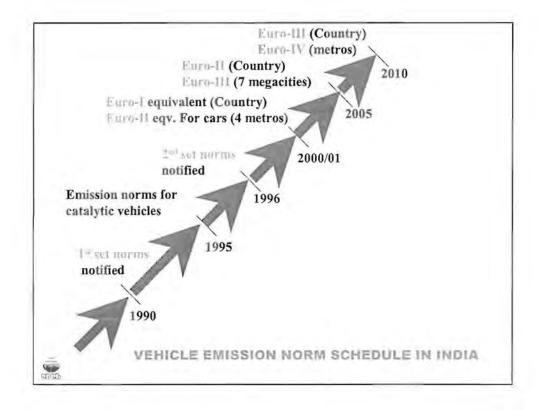


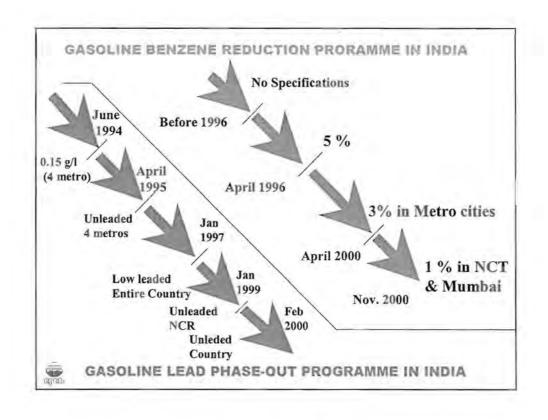
CONCLUSION OF AIR QUALITY MONITORING (LAST TEN YEARS)

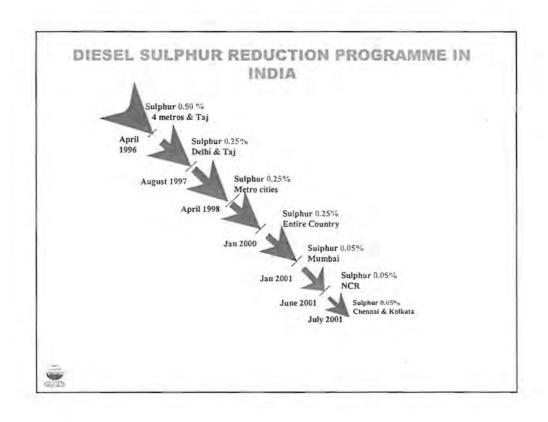
Critical Pollutants (exceeded the standard)

- RSPM (PM₁₀)
- Carbon Monoxide
- Benzene (Major Cities)
- Ozone (some places)
- Polyaromatic Hydrocarbon (Benzo a- Pyrene)
- Oxides of Nitrogen (Some places)

Within Limit


- Sulphur Dioxide
- Lead




STEP TAKEN SO FAR FOR CONTROLLING VEHICULAR POLLUTION

Vehicle Emission Standards

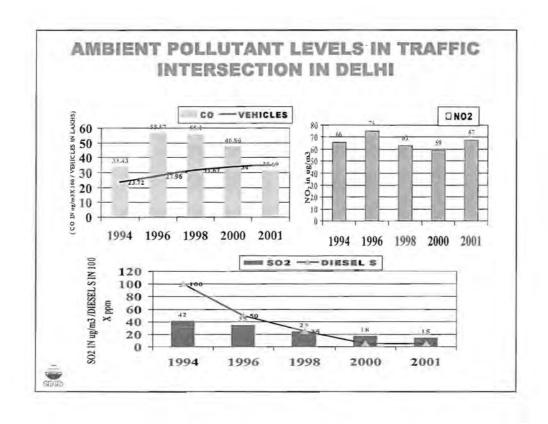
- 1991 Norms: First time introduced, very relaxed norms
- > 1996 Norms: Norms made slightly tighter
- > 1998 Norms: Passenger car with cat converter
- > 2000 Norms: India Stage 2000 (EURO I)
- > 2005 Norms: Bharat Stage II (EURO II)
- > 2010 Norms: Bharat Stage III (EURO III)

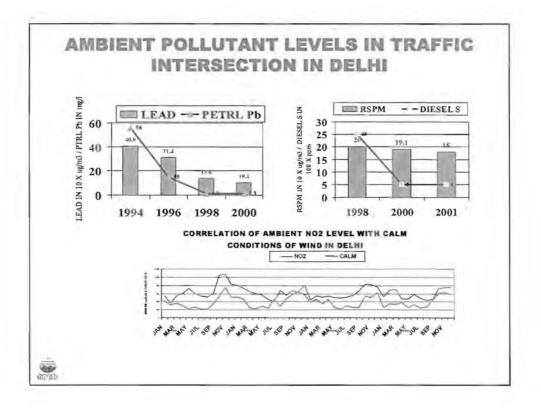
ALTERNATE FUEL

- CNG Norms notified more than 80,000 CNG vehicles in Delhi
- LPG Norms notified, LPG kits approved
- Gasoline with 5% ethanol from 2003 in sugar producing states & UT to be extended to other states and Union Territories. 10% to be introduced by 2007
- Bio diesel (5%) by 2005 & Bio diesel (10%) by 2011

STEP TAKEN TO CONTROL INDUSTRIAL AIR POLLUTION IN INDIA

- Enforcement of Standard in 17 categories of highly polluting industries.
- Use of Beneficiated Coal (34% Ash) in Power Plants.
- Pollution Prevention and Control Technology adoption in S.S.I. (stone crusher, brick kiln. etc.)
- Use of approved fuel in major cities.
- Adoption of clean process technology in major industries in India.
- Formulation and Implementation of Corporate Responsibility in Environmental Protection (CREP) Programme.


RESTRICTION ON GROSSLY POLLUTED VEHICLES


- 15 YEARS OLD COOMERCIAL VEHICLES PHASED OUT IN DELHI
- CITY DIESEL BUSES PHASED OUT IN DELHI

AGENCIES INVOLVED

- · Central Pollution Control Board
- · Ministry of Environment & Forests
- Environmental Pollution Control Authority
- · Ministry of Petroleum & Natural Gas
- Ministry of Road Transport & Highways
- · Ministry of Industries

IMPACT OF STEPS TAKEN TO CONTROL AIR POLLUTION IN DELHI – NATIONAL CAPITAL OF INDIA

PROGRESS MADE TO IMPLEMENT MALE' DECLARATION IN INDIA

PROPOSED MONITORING SITES - INDIA

BANGLADESH BORDER

- Port Canning (Sunder bans)

- Dumki

BHUTAN BORDER

: Bongaigaon

MALDIVES BORDER

Lakshadweep Islands

Andaman Islands

NEPAL BORDER

: Narkatiaganj

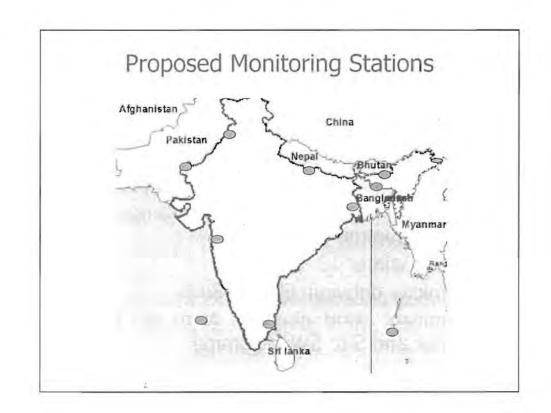
PAKISTAN BORDER

- Tanot

SRILANKA BORDER

- Pathankot

SOUTH EAST ASIA BORDER


Thirunelveli

NORTH EAST ASIA BORDER

Changele

ECOLOGICAL SITE

Molem

Proposed site for first station

Port Caning

Climate of the region

- · Tropical monsoon type climate
- Average annual rainfall 1750 1800 mm
- 80% rainfall between June and September
- Maximum and minimum temperature during summer 18 – 39°C during winter 13 -32°C
- Humidity between 60 and 88 %
- Dominant wind direction N to NE during winter and S to SW in summer

Sundarbans

Industrial Activities

- No large or medium industry located in Sundarbans
- Small scale manufacturing of cutlery and agricultural implements (Jayanagar and Mathurapur)
- Candle manufacturing, cock briquettes, small printing press, leather, wooden furniture, plastic, rubber electrical and other miscellaneous

Sources of Air pollution

- Use of Generator sets (Limited power supply)
- Burning of coal, briquettes, cow dung cake, wood, kerosene, dry leaf in household
- Water based transport by mechanised boats and launches

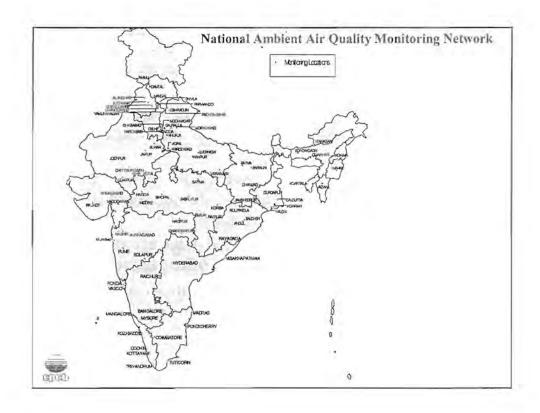
Port Canning

Industrial Activities

- Agriculture
- Fishing (mechanical boats and launches)
- Tourist movement in Sundarbans (mechanical boats and launches)

Sources of Air Pollution

- Burning of fire wood, coal, briquettes and kerosene
- · Running of generator sets
- · Plying of vehicles


Air Quality at Port Canning

Parameters	Station I	Station II	
RSPM	123	144	
SPM	131	229	
NO ₂	14	24	
SO ₂	BDL	5	

Unit: µg/m3, 24 hrs. average values

Strengthening of the Network

 In addition to the proposed station at Sundarbans additional stations will be incorporated in the Male' Network by relocating of existing stations under the National monitoring programme or establishing new stations

FUTURE PLAN IN INDIA TO STRENGTHENING AIR QUALITY MONITORING

- Increase number of air quality monitoring station from 295 to 1000 in phased manner.
- Inclusion of Toxic and Hazardous air pollutants monitoring (Benzene, Poly Aromatic Hydrocarbon. Ozone, Metals etc.) in selected station in phased manner.
- Strengthening monitoring of fine particulate matter (PM 10 & PM 2.5).
- Periodically calibration of air quality monitoring analysers.
- Setting of Regional air quality monitoring calibration centres (Vadodara, Banglore, Kanpur and Kolkata)
- Setting of few stations which will monitor background air quality.
- Location of air quality monitoring station based on proper scientific study.

 Condt...

- 8. Analytical Quality Control and Ring Test facilities for all air quality monitoring.
- Certain specific pollutants to be monitor continuously in back ground and maximum impacts zones.
- Proper ventilation coefficient and micro meteorological condition to be considered for locating new air quality station.
- 11. Periodic training to personnel who are doing air quality monitoring in SPCBs / other agencies.
- 12. Encouraging private participation in air quality monitoring.

ADVISORY COMMITTEE TO IMPLEMENT MALE' DECLARATION RECOMMENDATION IN INDIA

Advisory Committee

Nine member committee comprising members from

- · Central Pollution Control Board
- State Pollution Control Boards
- Research Organizations
- NGOs
- Experts in the field of Air pollution

Terms of Reference of Advisory Committee

- •To review the data, generated from the Air quality monitoring stations, established to monitor the transboundary air pollution before releasing it to UNEP or any other organisation.
- •To identify the emission sources within the country which may contribute to transboundary movement of air pollutants.
- •To prepare a list of major emission sources across the border which may affect the air quality within the country.

- •To develop a model for assessing the movement of air pollutants from major emission sources within the country.
- •To assess the need for strengthening / developing an Air quality monitoring network for assessing the transboundary movement of air pollutants from the neighbouring countries.
- •To identify the parameters, necessary for monitoring the transboundary movement of air pollutants (in addition to the parameters, identified under Male' Declaration).

RECOMMENDATION OF CPCB ON CONTROL AND PREVENTION OF AIR POLLUTION AND ITS LIKELY TRANSBOUNDARY EFFECTS FOR SOUTH ASIA

- Proper Inventory of air polluting sources (point, area and line source) to be made in this region using own country specific emission factors.
- Prediction of air quality using appropriate and validated air quality models.
- Location of air quality stations to see the impacts of transboundary air pollution should be selected based on proper scientific study.
- Likely impacts of air pollution from neighbouring counties (not included in the network) to be studied also where coal and oil consumption for industrial and transportation purpose is very high.
- Road map to be developed for improvement of fuel quality (both solid and liquid fuel) and to be implemented.

Condt..

- Major thrust to be given to pollution prevention and control option for small scale air polluting industries in this region (brick kiln, lime kiln, rerolling mills, arc furnaces, foundries etc.).
- Emission from Diesel Buses / Trucks and 2 stroke two and three wheelers to be controlled further and if required using clean fuel like CNG / LPG etc.
- Proper source apportionment study to identified the sources of various pollutants like FPM, NO_X, SO₂ to be conducted in time bound manner,

THANK YOU

Attachment VI Preparation of national implementation plan by Iran

Malé Declaration on Control and Prevention of Air Pollution and its Likely Transboundary Effects for South Asia

National monitoring plan In Iran

Presented by :Dr. saced motesaddi Director general for APRB, project manager

1-Introduction

2-Male declaration implementations plan
phase one
phase two

3-Establishment of advisory committee
4-Obstacle to the project
5-Suggestion

Introduction

✓ Bilateral, Regional and international cooperation

✓ Performance of monitoring programs (urban and industrial)

Implementation of Male declaration

phase one:

Signing and confirming the project agreement on February 19, 1999

Providing a databank on air pollution specialists and NGO's

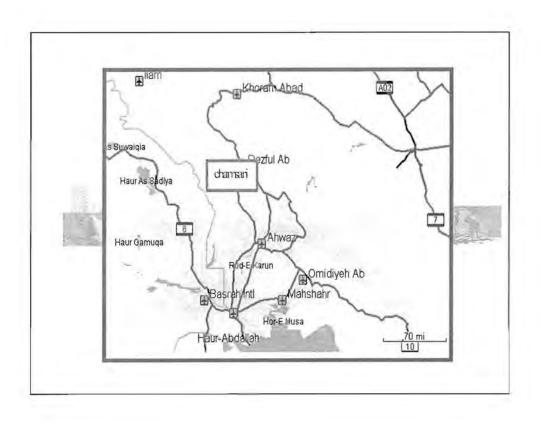
Conducting baseline studies

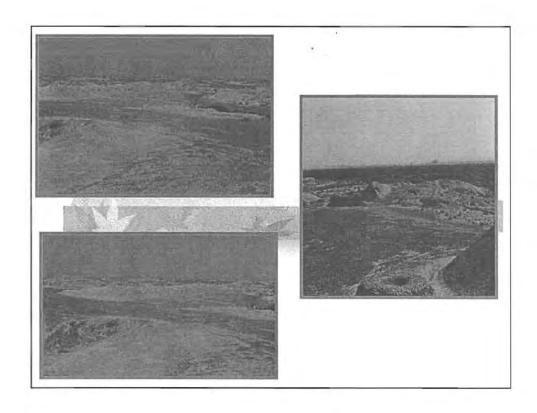
Collecting information about the current situation of air pollution

Identification of pollutants and dissemination sources as well as their assessment and studying

National solutions for problems stemming from pollution preparation of action plan

phase two: 1-Conducting preliminary meteorological studies 2-Implementing a study tour across the country 1)Ilam province (west of Iran) 2)Khoozestan province (South west of Iran) 3)Khorasan province (North east of Iran) 4)Mazandaran province (North of Iran) 5)Hormozgan province (South of Iran) 6)Khorasan province (North east of Iran) 7)Khoozestan province (South west of Iran) 8) West Azarbaijan province (North west of Iran) 9)Sistan and Baloochestan province (South east of Iran) 3-considering the first location chamsari one hectare Атеа:


Location:


graphical situation:

40 kilometer at the south of ilam near

32 23' north latitude and 47 30' of east longitude

the border of Iran - Iraq

Establishment of advisory committee

No	Name		Designation	
1	Dr	Sacod moresaildi (Chairman)	Director General for air pollution research bureau and assistant prof. DOE	
2	Prof.	Mansour ghiasaldin (Momher)	University professor in the field of air pollution	
3	Prof	Mahmoud shariat (Member)	University professor in the field of EIA and water quality and pollution	
4	Dr	Vahid (Sahanian (Member)	Associated prof. In the field of meteorology	
5	Ðτ	Masoud inonavari (Member)	Assistant prof. In the field of EIA and rep. of NGO's	
6	Dr	Absolalı sedaqat kerdar	Head of meteorological institute	
7	Ðτ	Mmini ranjbar (Member)	Director General for sustainable development bureau —ministry of agriculture	
8	Eng	Masholoh tohidi (Coordinasor)	Expert in the field of meteorology-DOE	
9	Eng	Sadradin alipour (Secretor)	Expert in the field of environment-DOE	

Obstacles to the Project

1-Budget:

Allocating one hectare land to the establishment and development of the First station

Constructing the station and a subsidiary building to accommodate the resident expert of the station

2-Problems related to America-Iraq war

Suggestions

- 1- Increasing budget
- 2- Establish a data bank through internet
- 3- Evaluating the effects of some meteorological and climatic parameters on shifting pollutants
- 4-Drawing up the related protocol

the Islamic Republic of Iran would be happy to host the next year's meeting of Male declaration in Tehran

Attachment VII
Preparation of national implementation plan by Nepal

Phase II

Malé Declaration on control and prevention of transboundary air pollution and its likely transboundary effects for South Asia

Nepal

Ministry of Population and Environment International Centre for Integrated Mountain Development

Site Information

Site Classification

: Rural

Latitude

: 270 38'52, 88"

Longitude

: 84º 20'47, 73"

Altitude

: 164.5m

Height of Sampling

:1.5m

Outline of Monitoring Plan

Current Monitoring site Parameters Measured

Air Concentration 1 SO2, NO2, PM10, TSP

Wet Deposition 1 pH, EC, NH₄+ Na+, K+,

Ca2+, Mg2+, SO42-, NO3-, Cl-

Measurement Method

PM10, TSP

High Volume Sampler

Envirotech model APM 460NL

Gaseous Sampling

Envirotech model APM 460NL with Gaseous Sampling

IVL Passive Samplers

Laboratory Responsible for Monitoring Wet and Dry Deposition

Institute

: Institute of Agriculture and Animal Science

(IAAS)

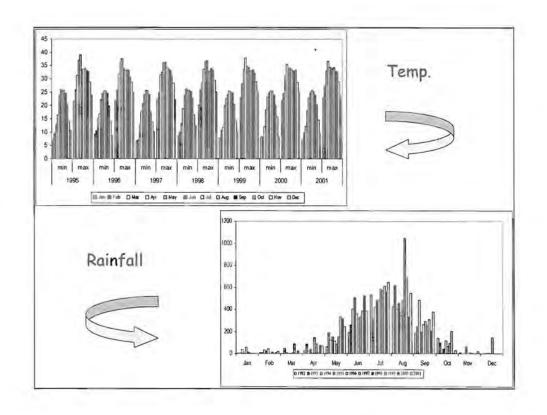
Department : Soil Science

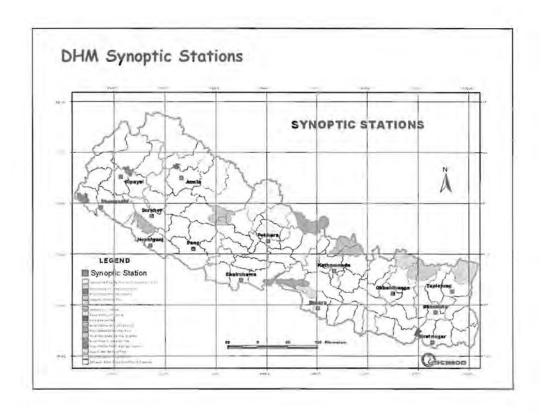
In Charge : Dr. Shri Chandra Jha

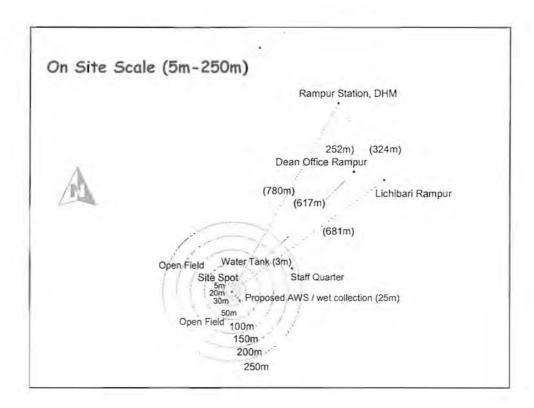
Address

: Institute of Agriculture and Animal

Science, Tribhuvan University, Rampur,

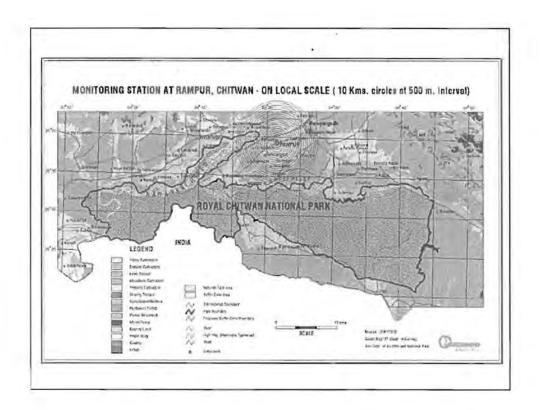

Chitwan.

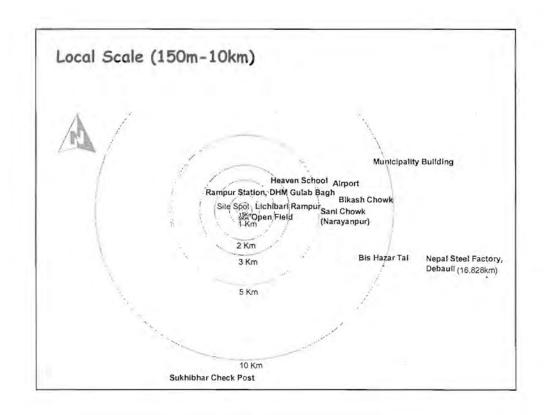

Sample Collection


10 Days each month

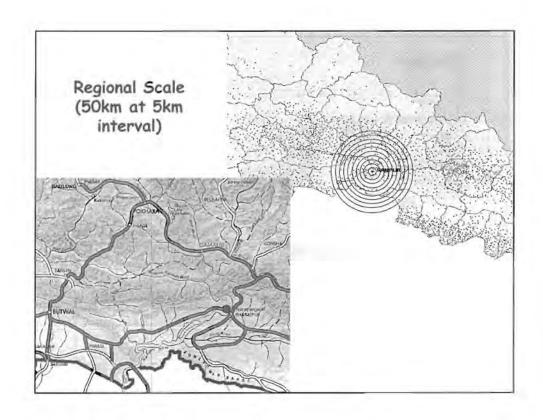
Meteorological Observation

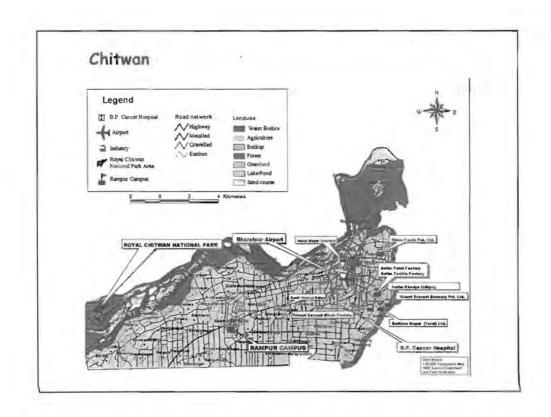
- ~ 780m
- · Rainfall
- · Temperature
- Humidity
- · Sunshine
- · Wind Velocity

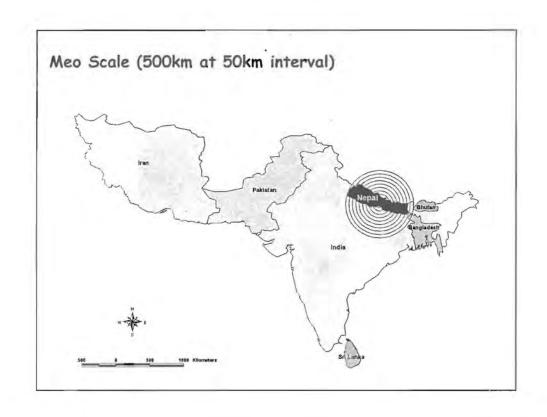


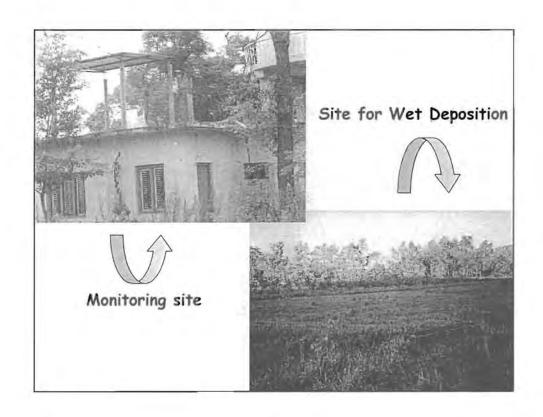


On Site Scale (within 250m)

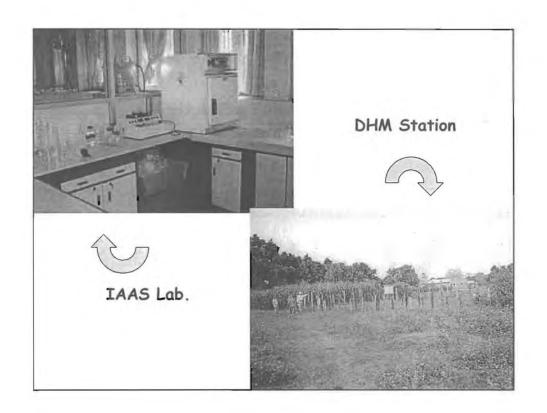

lloms	nonth direction (NW-NE)	east direction (NE-SE)	south direction (SE-SW)	west direction (SW-NW)
Existence of trees, poles and buildings, and the heights of those.	Few planted trees avg. 4m, Cultivated land Buildings avg. 5m	Few planted trees avg. 4m, Cultivated land, Buildings avg. 5m	Few trees, Cultivated land, No building	
Existence of emission sources, cooking energy domestic heating, waste and agricultural products, dairy farm, and many livestocks.	Refuse burning, Agriculture field, Cooking energy - gas	Cooking energy – gas Agriculture waste		
Graund Slope degree of the site. (+ for upwords)	0*	0*	0*	.0*
Surface condition of the site. % surface covered by rock, concrete trees, home shads building, etc.	10%	10%	0%	0%
Existence of a forest, river, lake, marsh, farm or fields.	Field	Field	Field	Field
Existence of roads, and their traffic densities.	Few only	No	No	No

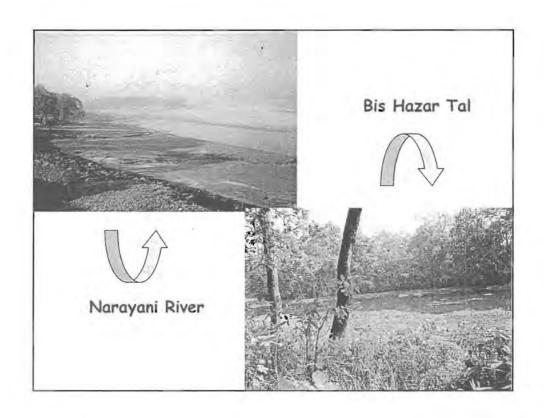

Local Scale (150m - 10km)

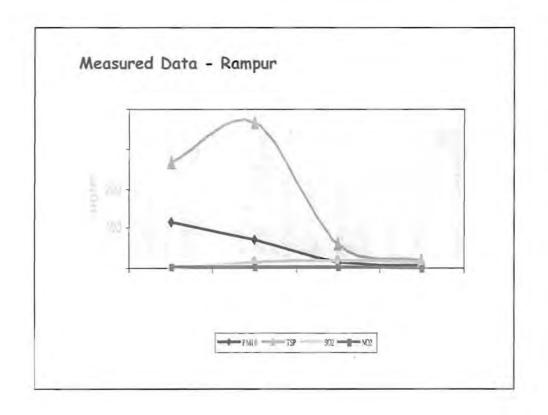

Items	North direction (NW-NE)	East direction (NE-SE)	South direction (SE-SW)	West direction (SW- NW)
Information on trunk roads, expressways, and their traffic densities (with more than >1,000 vehicles/day).	Side road nearly touching the main road Traffic density >1000	Side roads Traffic density <200	Side roads Traffic density <150	Side roads Traffic density <100
Lakes, rivers, streams Marshes, forests, etc.	Narayani river Cultivated land	Cultivated land	Cultivated land Rapti river	Narayani river Cultivated land
Information on major emission sources such as industries, and power plants and their fuel consumptions and so on.	Brikuti Paper Mill (10Km) Small food industries			
information on houses/ settlements with more than 100 persons, and their population.	Settlement approx. 6000 people	Settlement approx. 3000	Settlement approx. 3000	Settlement approx. 2000
Descriptive information around the site such as Topography, Soils, land use, meteorological condition	Area is plain, low elevated, river bed, mostly cultivated land with fertile soil: Narayani river – one of the major river, Tropical zone.			

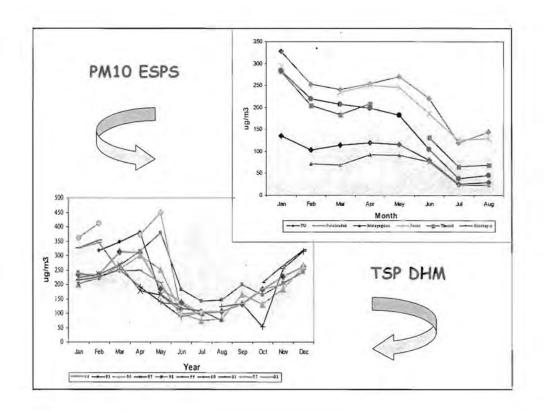


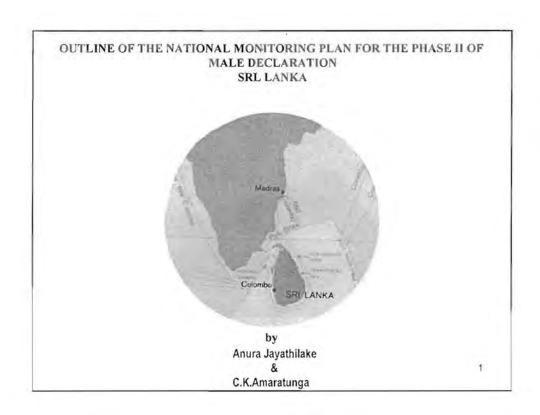
Regional Scale (up to - 50km)

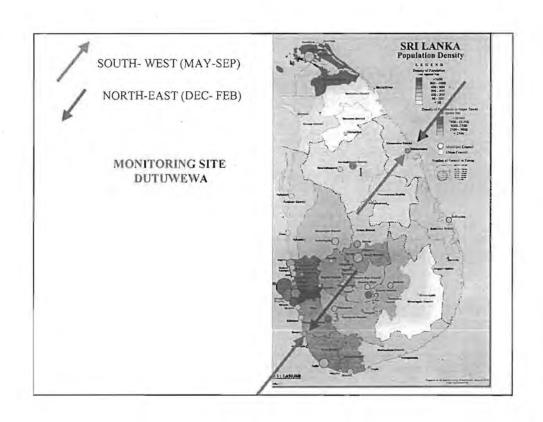

ftems	North direction (NW-NE)	East direction (NE-SE)	South direction (SE-SW)	West direction (SW-NW)
Existence of major air pollution sources* - industries (dist from Monitoring site and Sources strength in kg/day of SO2, NO2, SPM)	Brikuti Paper Mill and other small industries	Small Industries	Rice Mill, Saw Mill etc	Rice Mill, Saw Mill etc
Existence of roads with more than 5000 vehicles/day, and their traffic densities.	Hast West Highway shifts	East West Highway <5000 vehicles	Side Roads <500 vehicles	Highway / Side Road <4000
Existence of settlements with the population more than 1500 persons.	Population density <20,000	Population density	Population density <10000	Population density <12000











Attachment VIII
Preparation of national implementation plan by Sri Lanka

SITE FOR THE MONITORING STATION

3

TOWARDS NORTH

1

TOWARDS WEST

5

TOWARDS EAST

6

TOWARDS NE DIRECTION

7

ACCESS ROAD

MONITORING PARAMETERS

- PASSIVE SAMPLING FOR SO2 & NO2
- WET DEPOSISION
- PM10, SO2 & NO2
- LYMNOLOGY & SOIL CHARACTERISTICS DEPENDING ON THE AVAILABILITY OF FUNDS

9

ANALYSIS

PASSIVE SAMPLING

WE HAVE STARTED PASSIVE SAMPLING ON AUGUST 15, 2003 AT THE SITE. THE PROBLEM THAT WE FACED WAS TO PROTECT SAMPLERS FROM MONKEYS.

WET & DRY DEPOSITION

WE INTEND TO START THIS ACTIVITY IN OCTOBER,2003.
ANALYSIS WILL BE CARRIED OUT AT CEA LABORATORY.
CEA INTENDS TO PROCURE AN IRON CHROMATOGRAPH BEFORE
THE END OF THE YEAR. AAS AVAILABLE AT THE CEA WILL BE
USED FOR THE DETERMINATION OF CATIONS.

PM10, SO2 & NO2

WE INTEND TO START THIS ACTIVITY ALSO IN OCTOBER,2003. ANALYSIS WILL BE CARRIED OUT AT THE SITE ITSELF.

LOCATION OF PASSIVE SAMPLERS

11

INSTALLING PASSIVE SAMPLERS

LYMNOLOGY

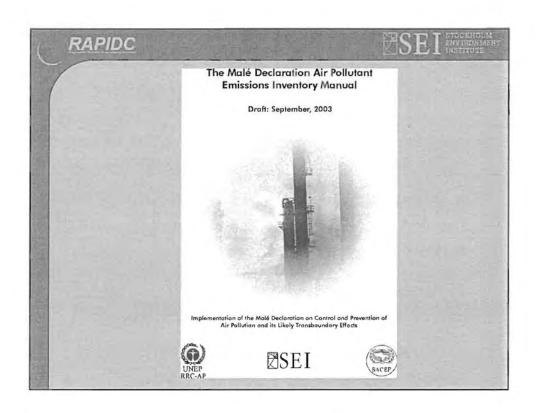
CEA INTENDS TO CARRY OUT THIS ACTIVITY IN COLLABORATION WITH PROF. Mrs.SVARNA PIYASIRI, DEPT OF ZOOLOGY, SRI JAYAWARDANEPURA UNIVERSITY DEPENDING ON THE AVAILABILITY OF FUNDS.

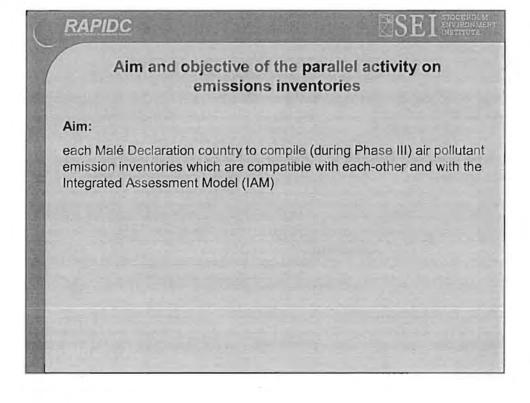
SOIL

CEA INTENDS TO CARRY OUT THIS ACTIVITY IN COLLABORATION WITH A SUITABLE LABORATORY SUCH AS RUBBER RESEACH INSTITUTE LAB, INDUSTRIAL TECHNOLOGY INSTITUTE LAB ETC. DEPENDING ON THE AVAILABILITY OF FUNDS.

HOWEVER, IT IS INTENDED TO DO THE SAMPLING ONLY ONE TIME TO BE KEPT AS BASELINE DATA COLLECTION.

13


ADVISORY COMMITTEE


NAME	POSITIO N	E-MAIL	
Dr. P.K.Kotta	SENRIC Coordinator	pk sacep@eureka k	
Prf. O.A.Illeperuma	Snr. Lecturer	oliveri@pdn.ac.lk	
Prf.(Mrs.) Swarna Piyasiri	Snr. Lecturer	piyasiri@slt.lk	
Dr. Anura Dissanayake	Soil Chemist	dirrri@tradenet.sl.lk	
Dr. B.R.S.S.Basnaya ke	Meteorologist		
Mr. H.D. Ratnayake	Dy. Director Dept. of Wild	hdr@dwlc.lk	

Dr. B.M.S.Batagoda	Director(Globle Aff.), My. Of Envt.	
Mr. Hemantha Withanage	NGO	hemantha@ef.is.l k

Attachment IX
Presentation on parallel activities on emission inventory and modeling

Aim and objective of the parallel activity on emissions inventories

Aim:

each Malé Declaration country to compile (during Phase III) air pollutant emission inventories which are compatible with each-other and with the integrated Assessment Model (IAM)

Objective:

to produce, in consultation with the NIAs and S. Asian experts, a manual and associated software (Excel-based workbook) for use by the Malé Declaration countries in compiling these emission inventories

RAPIDC

SEI STOCKHOLM

Process for developing the manual and workbook

 At end of Phase I, development of an IAM (including an emission inventory) identified by NIAs as a priority - to be carried out in parallel to the monitoring efforts.

Process for developing the manual and workbook

- At end of Phase I, development of an IAM (including an emission inventory) identified by NIAs as a priority - to be carried out in parallel to the monitoring efforts.
- This activity **builds on earlier work** carried out during Phase I especially the *Baseline Studies*

RAPIDC

Process for developing the manual and workbook

- At end of Phase I, development of an IAM (including an emission inventory) identified by NIAs as a priority - to be carried out in parallel to the monitoring efforts.
- This activity builds on earlier work carried out during Phase I especially the Baseline Studies
- The manual and workbook have been developed in consultation with the NIAs (questionnaire circulated last year) and regional experts

Process for developing the manual and workbook

- At end of Phase I, development of an IAM (including an emission inventory) identified by NIAs as a priority - to be carried out in parallel to the monitoring efforts.
- This activity builds on earlier work carried out during Phase I especially the Baseline Studies.
- The manual and workbook has been developed in consultation with the NIAs (questionnaire circulated last year) and regional experts
- Malé Declaration countries will then use the manual to develop emission inventories and run scenario projections in Phase III

RAPIDC

Pollutants included in manual

- · Sulphur dioxide (SO₂)
- Nitrogen oxides (NO_x)
- Particulate matter (PM₁₀ and Total Suspended Particulate (TSP))
- · Ammonia (NH₃)

Summary of emission source categories used in the manual

Energy sources:

- 1 Combustion in the Energy Industries
- 2 Combustion in Manufacturing Industries and Construction
- 3 Transport
- 4 Combustion in Other Sectors

RAPIDC

Summary of emission source categories used in the manual

Energy sources:

- 1 Combustion in the Energy Industries
- 2 Combustion in Manufacturing Industries and Construction
- 3 Transport
- 4 Combustion in Other Sectors

Other source sectors:

- 5 Fugitive emission from fuels
- 6 Industrial Processes
- 7 Agriculture
- 8 Vegetation Fires & Forestry
- 9 Waste
- 10 Natural sources

SEI STOLLHOUR

Breakdown of energy source sectors

Sector	Sub-sector	Sub-sub sector
1. Combustion in	Public Electricity and Heat Production	
Energy industries	Petroleum Refining	
	Manufacture of Solid Fuels and Other	Coke ovens
	Energy:	Patent fuel, BKB
		Gas works
	The second second	Charcoal production
2. Combustion in	Iron and steel	
Manufacturing	Non-ferrous metals	
Industries and Construction	Chemicals .	
	Pulp, paper and print	4
	Food, beverages and tobacco	5
	Textiles and leater	
	Other	
3. Transport	Civil Aviation	
	Road transport	
	Railways	
	Navigation	
	Pipeline transport	
	Other	
4 Combustion in other	Commercial/Institutional	
sectors	Residential	
	Agriculture/Forestry/Fishing	

RAPIDC

SEL

Fuel combustion sectors - Fuel categories

Coal	Gas	Oil	Combustible Renewables / wastes		
Cokin g Coal	Gas Works Gas (GWG)	Crude Oil	Solid B iomass and A nimal Products:		
Other Bitumin ous Co al & Anthracite	Natural Gas	Natura I G as Liquids (NGL)	Wood		
Sub-Bitumino us Coal	T. IF BILL	Refine ry Gas	Vegetal materials and wastes		
Lignite	160	Liquefied Petroleum Gas es (LPG)	Other (e.g. Animal products/wastes)		
Patent Fuel		Motor Gasoline	Gas/Liquids from Biomass		
Coke Oven Coke		Aviation Gasoline	Municip al Wast e		
Gas C oke	AND THE WAY	Gas oli ne type Jet Fuel	Industri al Waste		
BKB (Brown coal brique ttes)		Kerosene type Jet Fue I	Charco al		
Coke Oven G as (COG)		Kerosene	The state of the s		
Blast Furnace Gas (BFG)	10.5	Gas/Diesel Oil	THE PARTY OF THE P		
		Residual Fuel Oil (RFO)			
for the second	100	Petroleum Coke			
	SECTION AND ADDRESS OF	Other Petroleum Products			

General approach for calculation of emissions

Unless measured directly, emission are generally estimated using emission factors:

Emission = (emission factor) x (activity rate)

RAPIDC

SEI STOCKHOLM ENVIRONME

Emission Factors (EFs)

EFs are the rate of emission of a pollutant per unit of activity (e.g. kg NO_x per ktoe coal burnt; kg SO₂ per tonne copper smelted)

The manual and associated workbook contains suggested default EFs

Default EFs mostly derived from European or North American source documents (e.g. EMEP/Corinair; USEPA AP-42; IPCC Guidelines)

Emission Factors (EFs)

Where possible, EFs appropriate for the region have been used in the manual (and workbook) after consultation with NIAs, local experts and a literature search e.g.:

- Road vehicle EFs mostly from Indian Central Pollution Control Board (CPCB), New Delhi.
- Biomass fuel and biomass residue burning Centre for Environmental Science and Engineering, Mumbai, India.

RAPIDC

SET STORESOLM

Activity rates

Examples:

- For fuel combustion, the "activity rate" is the annual rate of consumption of a fuel (e.g. kilotonnes oil equivalent (ktoe) burnt per year)
- For industrial process emissions the "activity rate" is the annual rate of production of the commodity (e.g. tonnes copper per year)

Activity rates

Sources of activity data:

· National statistical yearbooks

RAPIDC

Activity rates

Sources of activity data:

- · National statistical yearbooks
- · International sources:

International Energy Agency (IEA) Energy Statistics and Balances of non-OECD Countries (on CD ROM)

United Nations, Industrial Commodity Statistics Yearbooks

UN Food and Agricultural Organization's on-line database FAOSTAT

Top-down or bottom up approach?

• Depends on data availability – flexibility crucial

RAPIDC

SEI STOCKHOLM

Top-down or bottom up approach?

- · Depends on data availability flexibility crucial
- If national data only then top-down

Top-down or bottom up approach?

- · Depends on data availability flexibility crucial
- If national data only then top-down
- If large point source (LPS) data bottom-up

RAPIDC

SEI STOCKHOLM BENGENCE

Top-down or bottom up approach?

- Depends on data availability flexibility crucial
- · If national data only then top-down
- If large point source (LPS) data bottom-up
- National and LPS sources can be inventoried together the workbook will automatically adjust national activity data to avoid 'double-counting'.

SEI IN HOLLING

The emission inventory Excel workbook: main menu

User must enter inventory details here:

Inventory year:	2000		
Region:	S. Asia		
Country:	Someland		
Province:	SomeCounty		

RAPIDC

SEL

The emission inventory Excel workbook: main menu

MENU OVERVIEW

Menu1 Sectors 1. to 4. Fuel combustion activities

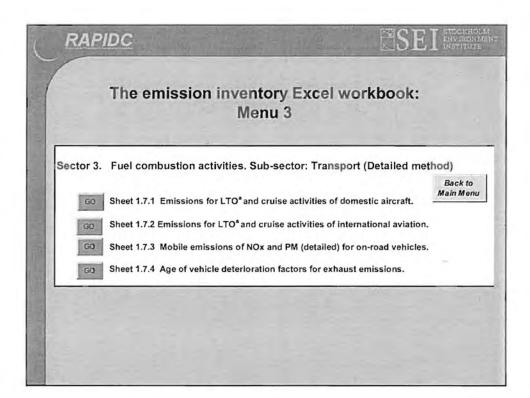
Menu2 Sector 5. Fugitive emissions (non-combustion) for fuels

Menu3 Sector 3. Fuel combustion activities. Sub-sector: Transport (Detailed method)

GO Menu4 Sector 6. Industrial processes (non-combustion) emissions

Menu5 Sector 7. Agriculture

Menu6 Sector 8. Vegetation fires and Forestry.


GO Menu7 Sector 9. Waste

GO Menu8 Sector 10. Natural sources

Menu9 Sector 11. Large Point sources

Sheet 8 Summary sheet - Annual emissions of each pollutant by source sector

References

Road transport emissions – detailed or simple method? • Emission Factors usually depend on vehicle type, age, fuel type, emission controls and so forth.

SEI STOUGHOUM

Road transport emissions – detailed or simple method?

- Emission Factors usually depend on vehicle type, age, fuel type, emission controls and so forth.
- If only national total fuel consumption data available simple method using average 'bulk' emission factors allows rough estimate.

RAPIDC

SEI

Road transport emissions – detailed or simple method?

- Emission Factors usually depend on vehicle type, age, fuel type, emission controls and so forth.
- If only national total fuel consumption data available simple method using average 'bulk' emission factors allows rough estimate.
- If data on fleet composition and average distance travelled per vehicle class per year are available – detailed method recommended.

Road transport emissions – detailed or simple method?

- Emission Factors usually depend on vehicle type, age, fuel type, emission controls and so forth.
- If only national total fuel consumption data available simple method using average 'bulk' emission factors allows rough estimate.
- If data on fleet composition and average distance travelled per vehicle class per year are available – detailed method recommended.
- · Workbook will permit either method.

RAPIDC

SET STOCKHOLD

Mobile emissions of (detailed) for on-road vehicles

Sheet 1.7.3 Mobile emissions of NOx, PM10 and TSP (detailed) for on-road vehicles.

Sector: Transport (Detailed method)

Sub-sector: Road transportation

BACK TO MENU

			A	В	C	D
			Number of vehicles in use	Average distance travelled per vehicle (km/yr)	Total distance travelled (km/yr)	Distance travelled on unpaved roads as a percent of total (%)
Fuel Vehicle class		Year of manufacture			C = A x B	
Gasoline	2-wheeler, 2-stroke	Pre 1986			0	
		1986-1990			0	
		1991-1995			0	
		1996-2000			0	
		2001-2005			0	
		2006-2010			0	
Gasoline	2-wheeler, 4-stroke	Pre 1986			0	
		1986-1990			0	
		1991-1995			0	
		1996-2000			0	
		2001-2005			0	
		2006-2010			0	
Gasoline	3-wheeler, 2-stroke	Pre 1986			0	

SEI

Mobile emissions of NO_X (detailed) for on-road vehicles

			E	F	G
Fuel Vehicle class		NO _x emission factor (g/km)	NO _x deterioration factor	NO _x emissions (Tonnes)	
	Year of manufacture	Default b		G = C x F x E/1000000	
Gasoline	2-wheeler, 2-stroke	Pre 1986	0.03	1.4	0
		1986-1990	0.03	1.4	0
		1991-1995	0.03	1.3	0
		1996-2000	0.06	1.2	0
		2001-2005	0.07	Newer than year 2000!	#VALUE!
		2006-2010	0.08	Newer than year 2000!	#VALUE!
Gasoline	2-wheeler, 4-stroke	Pre 1986	0.31	1.4	0
		1986-1990	0.31	1.4	0
		1991-1995	0.31	1,3	0
		1996-2000	0.3	1.2	0
		2001-2005	0.3	Newer than year 2000!	#VALUE!
		2006-2010	0.3	Newer than year 2000!	#VALUE!
Gasoline	3-wheeler, 2-stroke	Pre 1986	0.05	1.7	0

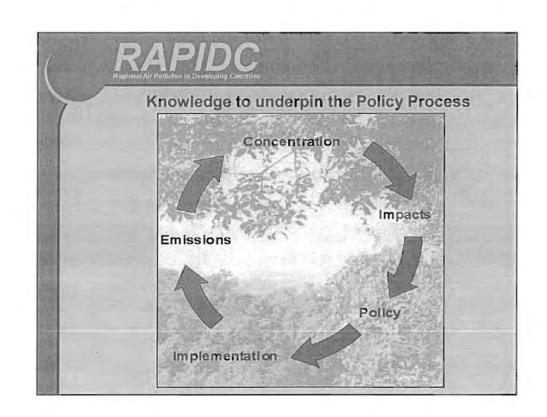
RAPIDC

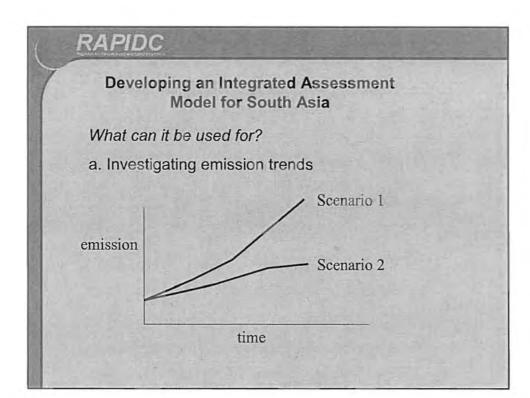
SEI STATES

Mobile emissions of PM₁₀ (detailed) for on-road vehicles

	H	4	1	- 1	M	N	Q	R
	-11111-1-1111-1111-1111-11	emission factor g/km) (Assume = TSP emission deterioration Exhaust Paved road resuspended or resuspen		nded dust emission	Paved road resuspended dust (PM ₁₀) emissions (Tonnes)	Unpayed roa resuspended dust (PM ₁₀) emission facto (g/km)	resuspended dust (PM ₁₀)	
Year of manufacture	Defaul		J = 1 x C x G/1000000		Default ¹	N = C x (100- D)/100 x M/1000000	Defa	R = C x (D/100 x Q/1000000
Pre 1986	0.23	1.4	0		0.02	0	64	0
1986-1990	0.23	1.4	0		0.02	0	64	0
1991-1995	0.23	1.3	0		0.02	0	64	0
1996-2000	0.1	1.2	0		0.02	0	64	0
2001-2005	0.05				0.02	0	64	0
2006-2010	0.05				0.02	0	- 64	0
Pre 1986	0.07	1.4	0		0.02	0	64	0
1986-1990	0.07	1.4	0		0.02	0.	64	0
1991-1995	0.07	1.3	0		0.02	0	64	0
1996-2000	0.06	1.2	0		0.02	0	64	0
2001-2005	0.05				0.02	0	64	0
2006-2010	0.05				0.02	0	64	0
Pre 1986	0.35	1.7	0		0.04	0	12	0
1986-1990	0.35	1.7	0		0.04	0	128	0

V						
	Mob	ile emi	ssion	s (de	etailed) for on-	road vehicles
		details	of us	er-e	ntered emission	on factors
		dotant	o uc		mora emilion	311 144 313 13
Detai	s of user-entere	d emission f	actors			
Fuel	Vehicle class and year of manufacture	Pollutant	Emission factor	Units	Reference source	Notes/Comments
				-		
				-		


		missions (detailed) for on- eference sources for activity	
efere uel	nce source for act	ivity rate(s) Reference source(s) for activity data	Notes/Comments
	7 0 110 0 110 0	Treaterine source(s) for activity data	Hotes/Comments
_			
_			

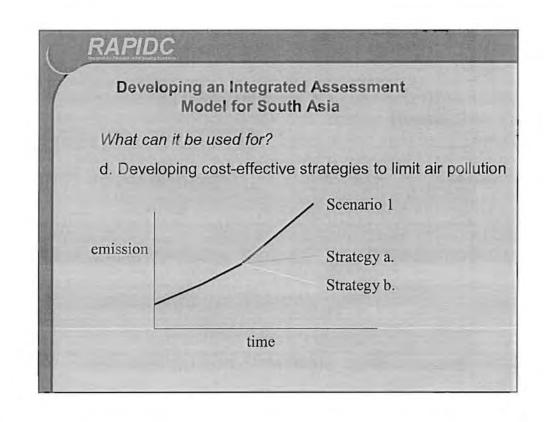


Developing an Integrated Assessment Model for South Asia

IAMs have proved useful in Europe for developing regional agreements on air pollution control. How can they help South Asia?

- · What can it be used for?
- · What questions can it answer?
- · What is the structure?
- · What are the different stages in the development?

Developing an Integrated Assessment Model for South Asia


What can it be used for?

b. Investigating regional movement of pollutants

Deposition in region

region	emission	a.	b.	c.	
a.	150	100	30	20	
b.	80	20	50	10	
c.	10	2	3	5	
Total d	eposition	122	83	35	

Developing an Integrated Assessment Model for South Asia What can it be used for? c. Assessing risks of impacts 1980 1979 4 1986 1970 1986

Developing an Integrated Assessment Model for South Asia

Phases in Model Development

Phase I:

develop model structure using internationally

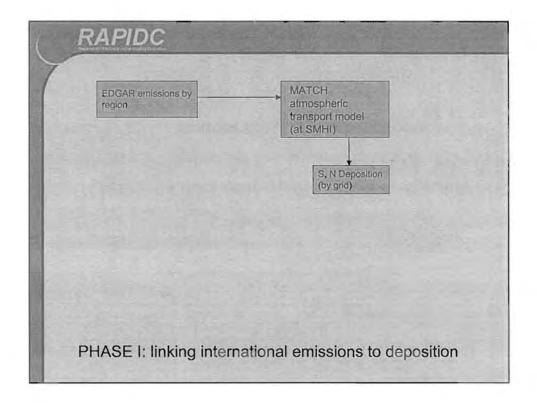
available data - allow NIA familiarity with

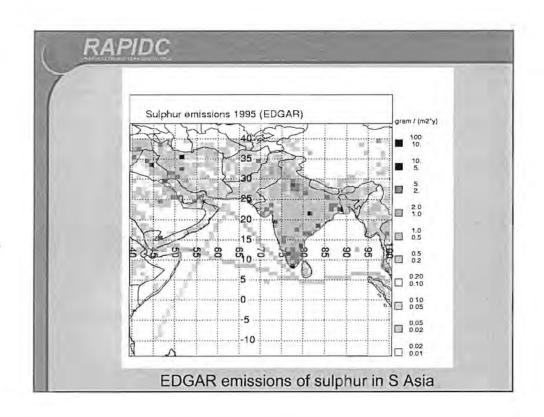
model (2003)

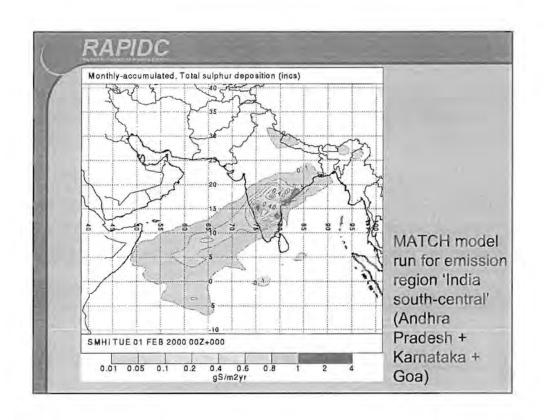
Phase II:

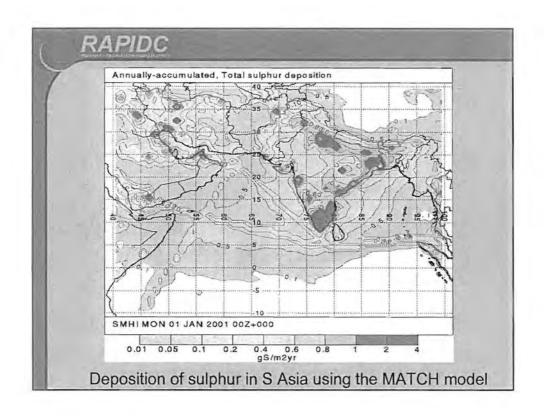
develop national emission inventories and

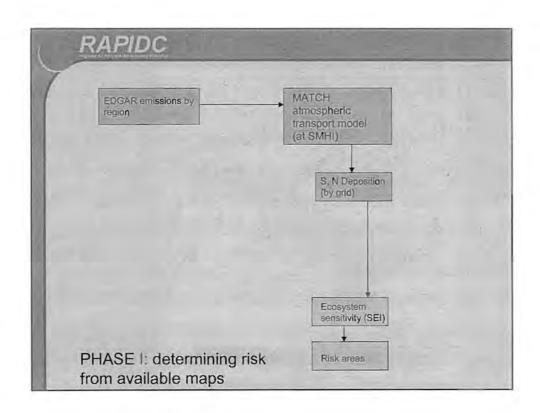
ecosystem impact data for use in the model and complete the transfer of MATCH model to Asia


(2004-2006)


Phase III:


further develop the model to include other


pollutants such as ozone, PM₁₀ and PM_{2.5}, and impacts such as crop yield losses, corrosion,


visibility and health (2006-)

